# 0505C/P (0.055" x 0.055")

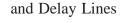
# Product Features

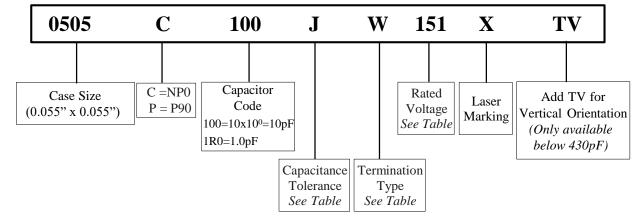
- High Q
- High Power
- Low ESR/ESL
- Low Noise
- High Self-Resonance
- Ultra Stable Performance
- Capacitance Range: 0.1pF to 1000pF
- Working Voltage: 150V
- Extended Voltage: 300V

# Part Numbering

# *<b>÷ Product Applications*

#### **Typical Functional Applications:**


- Tuning Bypass Coupling
- Feedback D.C. Blocking
- Impedance Matching


#### **Typical Circuit Applications:**

- UHF/Microwave RF Power Amplifiers
- Mixers Oscillators Filter Networks
- Low Noise Amplifiers Timing Circuits



Marking shown for illustration purposes only. Actual marking may differ.





# Capacitance Tolerance Codes

| Code | Α       | В      | С       | D      | F   | G   | J   | К    |
|------|---------|--------|---------|--------|-----|-----|-----|------|
| Tol. | ±0.05pF | ±0.1pF | ±0.25pF | ±0.5pF | ±1% | ±2% | ±5% | ±10% |

# ↓ Voltage Codes Voltage Code 50V 500 100V 101 150V 151 200V 201 250V 251 300V 301



sales@passiveplus.com

PPI0505CPData072423RevA

www.passiveplus.com



# 0505C/P (0.055" x 0.055")

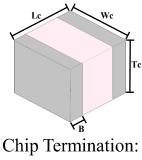
# # 0505C/P Capacitance Values

- NP0=C; P90=P
- Maximum Capacitance: 0505P=100pF; 0505C=1000pF
- \* Available in NP0 only.

Special capacitances, tolerances and WVDC are available. Please contact PPI.



| Cap. | Сар  |      | Rated | WVDC       | Cap. | Сар  |             | Rated | WVDC | Cap. | Сар  |      | Rated | WVDC       | Cap. | Сар  |             | Rated | WVDC   |
|------|------|------|-------|------------|------|------|-------------|-------|------|------|------|------|-------|------------|------|------|-------------|-------|--------|
| pF   | Code | Tol. |       | Ext.       | pF   | Code | Tol.        | Std.  | Ext. | pF   | Code | Tol. | Std.  | Ext.       | pF   | Code | Tol.        | Std.  | Ext.   |
| 0.1  | 0R1  |      |       |            | 2.4  | 2R4  |             |       |      | 20   | 200  |      |       |            | 160  | 161* |             |       |        |
| 0.2  | OR2  |      |       |            | 2.7  | 2R7  |             |       |      | 22   | 220  |      |       |            | 180  | 181* |             |       |        |
| 0.3  | 0R3  |      |       |            | 3.0  | 3R0  |             |       |      | 24   | 240  |      |       |            | 200  | 201* |             |       |        |
| 0.4  | 0R4  |      |       |            | 3.3  | 3R3  |             |       |      | 27   | 270  |      |       |            | 220  | 221* | F,G,<br>J,K | 150V  | 200V   |
| 0.5  | OR5  |      |       |            | 3.6  | 3R6  |             |       |      | 30   | 300  | F,G, | 150V  | 250V<br>or | 240  | 241* | 5,10        |       |        |
| 0.6  | OR6  |      |       |            | 3.9  | 3R9  |             |       |      | 33   | 330  | J,K  | 1200  | 300V       | 270  | 271* |             |       |        |
| 0.7  | OR7  |      |       |            | 4.3  | 4R3  |             |       | 250V | 36   | 360  |      |       |            | 300  | 301* |             |       |        |
| 0.8  | OR8  |      |       |            | 4.7  | 4R7  | А,В,<br>С,D | 150V  | or   | 39   | 390  |      |       |            | 330  | 331* |             |       |        |
| 0.9  | OR9  |      |       |            | 5.1  | 5R1  | С, D        |       | 300V | 43   | 430  |      |       |            | 360  | 361* |             |       |        |
| 1.0  | 1R0  |      |       |            | 5.6  | 5R6  |             |       |      | 47   | 470  |      |       |            | 390  | 391* |             |       |        |
| 1.1  | 1R1  | A,B, | 1501/ | 250V       | 6.2  | 6R2  |             |       |      | 51   | 510  |      |       |            | 430  | 431* | F,G,        | 1501  | NI / A |
| 1.2  | 1R2  | C,D  | 150V  | or<br>300V | 6.8  | 6R8  |             |       |      | 56   | 560  |      |       |            | 470  | 471* | J,K         | 150V  | N/A    |
| 1.3  | 1R3  |      |       |            | 7.5  | 7R5  |             |       |      | 62   | 620  |      |       |            | 510  | 511* |             |       |        |
| 1.4  | 1R4  |      |       |            | 8.2  | 8R2  |             |       |      | 68   | 680  |      |       |            | 560  | 561* |             |       |        |
| 1.5  | 1R5  |      |       |            | 9.1  | 9R1  |             |       |      | 75   | 750  |      |       |            | 620  | 621* |             |       |        |
| 1.6  | 1R6  |      |       |            | 10   | 100  |             |       |      | 82   | 820  | F,G, | 4501/ | 2001/      | 680  | 681* |             |       |        |
| 1.7  | 1R7  |      |       |            | 11   | 110  |             |       |      | 91   | 910  | J,K  | 150V  | 200V       | 750  | 751* |             |       |        |
| 1.8  | 1R8  |      |       |            | 12   | 120  |             |       | 250V | 100  | 101  |      |       |            | 820  | 821* | F,G,<br>J,K | 50V   | 100V   |
| 1.9  | 1R9  |      |       |            | 13   | 130  | F,G,        | 150V  | or   | 110  | 111* |      |       |            | 910  | 911* | Ј,К         |       |        |
| 2.0  | 2R0  |      |       |            | 15   | 150  | J,K         |       | 300V | 120  | 121* |      |       |            | 1000 | 102* |             |       |        |
| 2.1  | 2R1  |      |       |            | 16   | 160  |             |       |      | 130  | 131* |      |       |            |      |      |             |       |        |
| 2.2  | 2R2  |      |       |            | 18   | 180  |             |       |      | 150  | 151* |      |       |            |      |      |             |       |        |


\*Available in NP0 only





# 0505C/P (0.055" x 0.055")

# *†* Termination Types and Codes



Codes: W, L, P

| Magnetic Terminations   |                                              |  |  |  |  |  |  |
|-------------------------|----------------------------------------------|--|--|--|--|--|--|
| <b>Termination Code</b> | Termination                                  |  |  |  |  |  |  |
| W ROHS                  | 100% Tin<br>Solder over Nickel Barrier       |  |  |  |  |  |  |
| L                       | 90%Tin/10%Lead<br>Solder over Nickel Barrier |  |  |  |  |  |  |
| Non-Magne               | tic Terminations 🔗                           |  |  |  |  |  |  |
| <b>Termination Code</b> | Termination                                  |  |  |  |  |  |  |
| P ROHS                  | 100% Tin<br>Solder over Copper Barrier       |  |  |  |  |  |  |

# **†** Dimensions

|      |      | Μ                                                 | agnetic Terminations                                             |                     |                                                                     |
|------|------|---------------------------------------------------|------------------------------------------------------------------|---------------------|---------------------------------------------------------------------|
| Code | Term | Length<br>Lc                                      | Width<br>Wc                                                      | Thickness<br>Tc     | Overlap<br>B                                                        |
| W/L  | Chip | 0.055 + 0.015 to -0.010<br>(1.40 + 0.38 to -0.25) | $\begin{array}{c} 0.055 \pm .010 \\ (1.40 \pm 0.25) \end{array}$ | 0.057<br>(1.45 max) | $\begin{array}{c} 0.010 \sim 0.023 \\ (0.25 \sim 0.60) \end{array}$ |

| Non-Magnetic Terminations 🔗 |      |                                                   |                                                                  |                     |                                |  |  |  |  |
|-----------------------------|------|---------------------------------------------------|------------------------------------------------------------------|---------------------|--------------------------------|--|--|--|--|
| Code                        | Term | Length<br>Lc                                      | Width<br>Wc                                                      | Thickness<br>Tc     | Overlap<br>B                   |  |  |  |  |
| Р                           | Chip | 0.055 + 0.015 to -0.010<br>(1.40 + 0.38 to -0.25) | $\begin{array}{c} 0.055 \pm .010 \\ (1.40 \pm 0.25) \end{array}$ | 0.057<br>(1.45 max) | 0.010 ~ 0.023<br>(0.25 ~ 0.60) |  |  |  |  |

Note: "Non-Magnetic" means no magnetic materials.

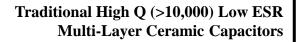




# 0505C/P (0.055" x 0.055")

# # Electrical Specifications

| Quality Factor (Q)                    | Greater than 10,000 at 1 MHz                                                                                      |  |  |  |  |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Insulation Resistance (IR)            | 10 <sup>5</sup> MegaOhms min. @ +25°C rated WVDC<br>10 <sup>4</sup> MegaOhms min. @ +125°C rated WVDC             |  |  |  |  |
| Rated Voltage                         | See Rated Voltage in Capacitance Table                                                                            |  |  |  |  |
| Dielectric Withstanding Voltage (DWV) | 250% of Rated Voltage of 5 seconds                                                                                |  |  |  |  |
| Operating Temperature Range           | -55°C to 200°C                                                                                                    |  |  |  |  |
| Temperature Coefficient (TC)          | <ul> <li>C: -55°C to 125°C 0±30ppm/°C;</li> <li>&gt;125°C to 200°C 0±60ppm/°C</li> <li>P: +90±20ppm/°C</li> </ul> |  |  |  |  |
| Capacitance Drift                     | $\pm 0.02\%$ or $\pm 0.02$ pF, whichever is greater                                                               |  |  |  |  |
| Piezoelectric Effects                 | None                                                                                                              |  |  |  |  |
| Termination Type                      | See Termination Type Table                                                                                        |  |  |  |  |


Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

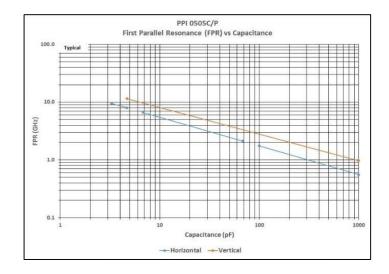
# **÷** Environmental Specifications

|                            | Specification                                                                                                                                        | Test Parameters                                                                                                                                                                                |  |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Thermal Shock              | <b>DWV:</b> The initial Value<br><b>IR:</b> Shall not be less than<br>30% of the initial value.<br><b>Capacitance Change:</b>                        | MIL-STD-202, Method 107, Condition A.<br>At the maximum rated temperature (-55°C and<br>200°C) stay 30 minutes, the time of removing shall<br>not be more than 3 minutes. Perform five cycles. |  |  |
| Moisture<br>Resistance     | No more than 0.5% or 0.5pF,<br>whichever is greater.                                                                                                 | MIL-STD-202, Method 106                                                                                                                                                                        |  |  |
| Humidity<br>(Steady State) | <b>DWV:</b> The initial Value<br><b>IR:</b> The initial value.<br><b>Capacitance Change:</b><br>No more than 0.5% or 0.5pF,<br>whichever is greater. | MIL-STD-202, Method 103, Condition A<br>With 1.5Volts DC applied while subjected to an<br>environment of 85°C with 85% relative humidity for<br>240 hours minimum.                             |  |  |
| Life                       | IR: Shall not be less than<br>30% of the initial value.<br>Capacitance Change:<br>No more than 2.0% or 0.5pF,<br>whichever is greater.               | MIL-STD-202, Method 108. For 2000 hours, at 200°C.<br>Rated Voltage DC applies.                                                                                                                |  |  |
| Terminal Strength          | <b>Force:</b> 10lbs typical, 5lbs. Minimum. <b>Duration Time:</b> 5 to 10 seconds                                                                    | MIL-STD-202, Method 211A, Test Condition A.<br>Applied a force and maintained for a period of 5 to<br>10 seconds. The force shall be in the direction of the<br>axes of the terminations.      |  |  |



sales@passiveplus.com PPI0505CPData072423RevA

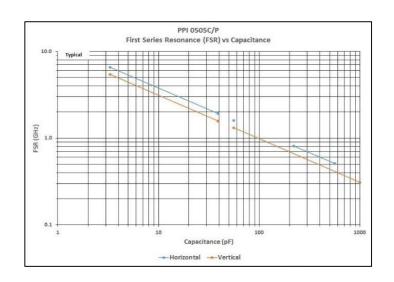



# 0505C/P (0.055" x 0.055")

# **FPR --** First Parallel Resonance (FPRs)

# Definitions and Measurement Conditions

The **First Parallel Resonance**, **FPR**, is defined as the lowest frequency at which a suckout or notch appears in |S21|.


It is generally independent of substrate thickness or dielectric constant, but does depend on capacitor orientation. A horizontal orientation means the capacitor electrode planes are parallel to the plane of the substrate; a vertical orientation means the electrode planes are perpendicular to the substrate.



# **FSR -- First Series Resonance (FSRs)**

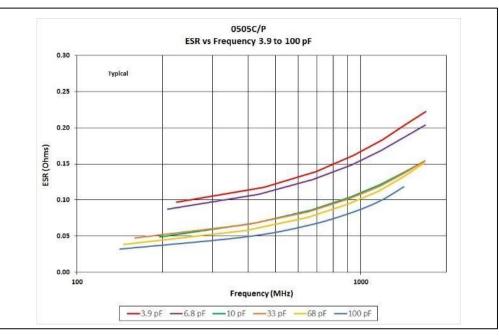
# *†* Definitions and Measurement Conditions

The First Series Resonance, FSR, is defined as the lowest frequency at which the imaginary part of the input impedance, Im[Zin], equals zero. Should Im[Zin] or the real part of the input impedance, Re[Zin], not be monotonic with frequency at frequencies lower than those at which Im[Zin] =0, the FSR shall be considered as undefined (represented as a gap in the plot). FSR is dependent internal capacitor on structure: substrate thickness and dielectric constant; capacitor orientation, as defined alongside the FPR plot; and mounting pad dimensions.



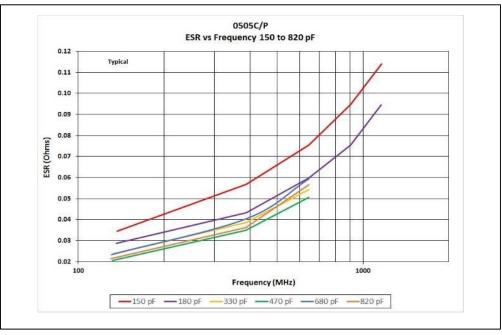
The measurement conditions are: substrate – Rogers RO4350; substrate dielectric constant = 3.66; horizontal mount substrate thickness (mils) =25; gap in microstrip trace (mils) = 15; horizontal mount microstrip trace width (mils) = 55. Reference planes at sample edges.

All data has been derived from electrical models created by Modelithics, Inc., a specialty vendor contracted by PPI. The models are derived from measurements on a large number of parts disposed on several different substrates.




sales@passiveplus.com PPI0505CPData072423RevA




# 0505C/P (0.055" x 0.055")

# ≠ ESR vs. Frequency

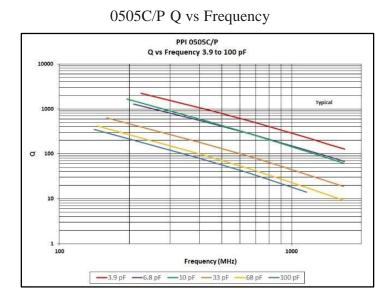


0505C/P ESR vs Frequency

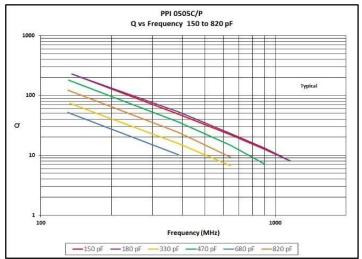
#### 0505C ESR vs Frequency





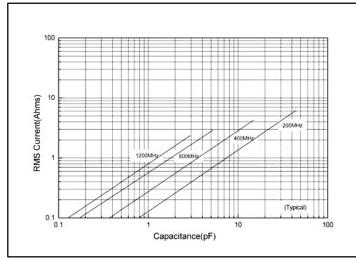

sales@passiveplus.com

PPI0505CPData072423RevA




# 0505C/P (0.055" x 0.055")

# **‡** Q vs. Frequency

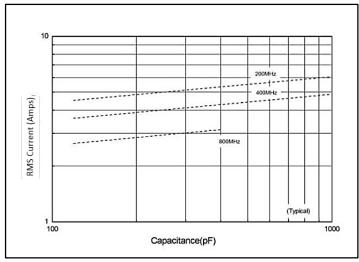



0505C Q vs Frequency



# **÷** Current Rating vs. Capacitance

#### 0505C/P Current Rating vs Capacitance




The current depends on voltage limited:

$$I = \frac{\sqrt{2}}{2} I_{peak} = \frac{\sqrt{2}}{2} \times \frac{V_{rated}}{X_c} = \sqrt{2} \pi d^2 C V_{rated}$$

The current depends on power dissipation limited:  $I = \sqrt{\frac{I \text{ dissipation}}{ESR}}$ 

0505C Current Rating vs Capacitance



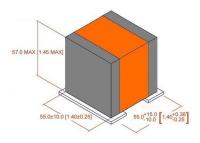
Note: If the thermal resistance of mounting surface is  $40\,^{\circ}\text{C/W}$ . then a power dissipation of 1.5 W will result in the current limited we can calculate the current limited:

$$I = \sqrt{\frac{P_{dissipation}}{ESR}}$$

sales@passiveplus.com

PPI0505CPData072423RevA




www.passiveplus.com



# 0505C/P (0.055" x 0.055")

# Capacitor Application Program

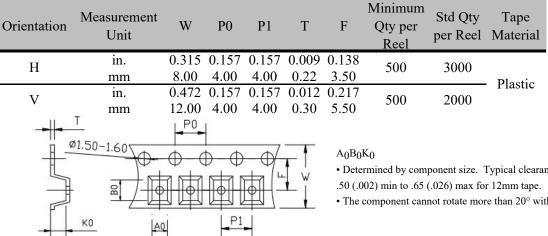
Passive Plus, Inc.'s brand new **online Capacitor Application Program** (C.A.P.) helps Engineers and Designers select capacitors according to parameters such as cap value and frequency. C.A.P. allows engineers to insert capacitors requirements (Cap value, Frequency), producing Scattering Matrices (S2P) Charts while providing options (Case Size, Terminations, Mounting), and parameters (ESR, Q, Impedance) along with Datasheets. Once engineers have determined their capacitor requirements, C.A.P. also includes online Requests For Quotes (RFQs) and/or sample requests.



# **Modelithics Vendor Program**

PPI offers design engineers a Free 90-Day Trial license for the Modelithics PPI Component Library. This program provides engineers access to extremely accurate scalable simulation models for Passive Plus capacitors with advanced features that enable a more precise and rapid design process.

Microwave Global Models include every part value in a series and permit users to input substrate thickness, dielectric constant, and loss tangent, as well as mounting pad layout dimensions. Selected models also include capacitor orientation – vertical or horizontal – as an input. Engineers can request FREE use of the models, by either visiting the <u>Passive Plus Resources page</u> (http://passiveplus.com/addldocs\_resources.php).








# 0505C/P (0.055" x 0.055")

# **Tape & Reel Specifications**



• Determined by component size. Typical clearance between the cavity and the component is:

• The component cannot rotate more than 20° within the determined cavity.

#### **Engineering Design Kits** +

PPI offers Design Kits for engineers who are building and testing prototypes. Each kit contains 16 values;10 pieces per value.

'assive Plus **RF & Microwave Components** 

Kits are offered in Magnetic or Non-Magnetic Terminations. Kits are 100% RoHS compliant.

|         | Values                                                                          | Value        | Number       | Kit N      |
|---------|---------------------------------------------------------------------------------|--------------|--------------|------------|
|         | v aiues                                                                         | Range        | NON-MAGNETIC | MAGNETIC   |
|         | 0 1 0 2 0 2 0 4 0 5 0 6 0 7 0 8 0 0 1 0 1 2 1 5 1 6 1 8 2 0 mE                  | 0.1. 2.0mE   | DKD0505C05   | DKD0505C01 |
| RoHS    | 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.5, 1.6, 1.8, 2.0pF     | 0.1 - 2.0pF  | DKD0505P05   | DKD0505P01 |
|         | 10 10 15 18 20 20 24 27 20 22 20 47 56 68 80 10mE                               | 1 10-E       | DKD0505C06   | DKD0505C02 |
| RoHS    | 1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2, 10pF | 1 - 10pF     | DKD0505P06   | DKD0505P02 |
|         | 10 10 15 19 20 22 24 27 20 22 20 47 5( (0 02 100 F                              | 10 100 E     | DKD0505C07   | DKD0505C03 |
| RoHS    | 10, 12, 15, 18, 20, 22, 24, 27, 30, 33, 39, 47, 56, 68, 82, 100pF               | 10 - 100pF   | DKD0505P07   | DKD0505P03 |
| )00pF 💉 | 100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820, 10   | 100 - 1000pF | DKD0505C08   | DKD0505C04 |

DKD0505C04

100 - 1000pF 100, 120, 150, 180, 200, 220, 240, 270, 300, 330, 390, 470, 560, 680, 820, 1000pF 🛫



+1 (631) 425-0938

sales@passiveplus.com PPI0505CPData072423RevA