

HIGH POWER COMPONENTS

FOR HIGH CURRENT/ HIGH VOLTAGE APPLICATIONS

- High-Q Low ESR Capacitors
- High Power Custom Assemblies

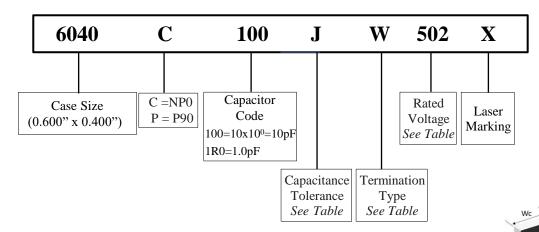
Product Features

- High Q
- High Power
- Low ESR/ESL
- Low Noise
- High Self-Resonance
- Ultra Stable Performance

÷ Product Applications

Typical Functional Applications:

- Tuning Bypass Coupling
- Feedback D.C. Blocking
- Impedance Matching


Salary Diches

Marking shown for illustration purposes only. Actual marking may differ.

Typical Circuit Applications:

- UHF/Microwave RF Power Amplifiers
- Mixers Oscillators Filter Networks
- Low Noise Amplifiers Timing Circuits and Delay Lines

Part Numbering

≠ Case Size (Chip) Dimensions

	2225	3838	6040	7676
Length (L _c)	0.225 -0.010+0.25	0.380 -0.010+0.015	0.614 -0.010+0.015	0.760 -0.010+0.015
	(5.72 -0.25+ 0.64)	(9.65 -0.25+0.38)	(15.6 -0.25+0.38)	(19.3 -0.25+0.38)
Width (W _c)	0.250 ± 0.015	0.380±0.010	0.433±0.010	0.760±0.010
	(6.35 ± 0.38)	(9.65±0.25)	(11.0±0.25)	(19.3±0.25)
Thickness (T _c)	0.150	0.170	0.154±0.008	0.154±0.008
	(3.81) max	(4.32) max	(3.90±0.20) max	(3.90±0.20) max
Overlap (B)	0.020~0.470	0.024~0.059	0.063	0.063
	(0.50~1.20) max	(0.60~1.50)	(1.60) max	(1.60) max

Temperature Coefficient

C: -55°C to 125°C 0 ± 30 ppm/°C; >125 °C to 200°C 0 ± 60 ppm/°C

P: $+90\pm20$ ppm/°C

Rated Capacitance

Capacitance is less than 10pF; for example: 1R0=1.0pF, R denotes decimal point

Capacitance greater than 10pF; for example: 101=100pF, the third number is the power of 10

Tolerance

			Capacit	ance Tole	rance			
Code	A	В	C	D	F	G	J	K
Tolerance	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

Termination Types and Codes

		Magnetic		Non-Magnetic 🔗				
Terminati Code	Tyne		Magnetic Termination	Termina Code		Туре	Non-Magnetic Terminations	
W	RoHS	Chip	100% Sn Solder over Nickel Plating	P	RoHS	Chip	100% Sn Solder over Copper Plating	
L		Chip	90% Sn10%Pb Tin/Lead Solder	MN	RoHS	Microstrip	_	
	1		over Nickel Plating	AN	RoHS	Axial Ribbon	Silver-Plated	
MS	RoHS	Microstrip		FN	RoHS	Radial Ribbon		
AR	RoHS	Axial Ribbon		RN	RoHS	Axial Wire		
RR	RoHS	Radial Ribbon	Silver-Plated Copper	BN	RoHS	Radial Wire	_	
RW	RoHS	Axial Wire					_	
AW	RoHS	Radial Wire	_					

Voltages

Code	Rated Voltage	Code	Rated Voltage
501	500V	362	3600V
102	1000V	502	5000V
152	1500V	722	7200V
202	2000V	802	8000V
252	2500V	103	10000V
302	3000V		

Laser Marking

An "X" at the end of the part number indicates the part is marked.

Performance Requirements

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

All products are in compliance with RoHS instruction.

Marking shown for illustration purposes only.

2225C/P (0.220" x 0.250")

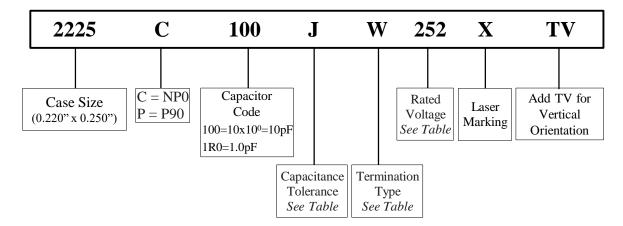
Product Features

- High Q
- High RF Current/Voltage
- Ultra Stable Performance
- Capacitance Range: 0.5pF to 2700pF
- Working Voltage: 2500V
- Extended Voltage: 3600V

† Product Applications

Typical Functional Applications:

- Tuning Bypass Coupling
- Feedback D.C. Blocking
- Impedance Matching


Typical Circuit Applications:

- UHF/Microwave RF Power Amplifiers
- Antenna Tuning Plasma Chambers
- Medical Equipment

Marking shown for illustration purposes only. Actual marking may differ.

Part Numbering

Capacitance Tolerance Codes

Code	A	В	C	D	F	G	J	K
Tol.	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

Voltage Codes

Voltage	Code	Voltage	Code
500V	501	2500V	252
1000V	102	3000V	302
1500V	152	3600V	362
2000V	202		

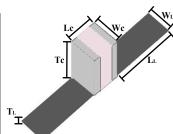
≠ 2225C/P Capacitance Values

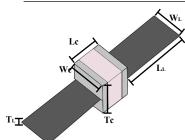
• NP0=C; P90=P

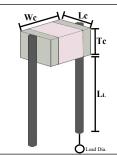
Special capacitances, tolerances and WVDC are available. Please contact PPI.

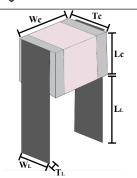


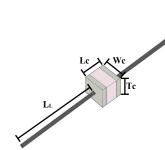
Cap.	Сар	T-1	Rated '	WVDC	Cap.	Сар	T-1	Rated WV	/DC	Cap.	Сар	T-1	Rated	WVDC	Cap.	Сар	T-1	Rated	WVDC
рF	Code	Tol.	Std.	Ext.	pF	Code	Tol.	Std. Ex	ct.	pF	Code	Tol.	Std.	Ext.	pF	Code	Tol.	Std.	Ext.
0.5	OR5				4.3	4R3				43	430				430	431	F,G,	1500\/	2000V
0.6	OR6				4.7	4R7				47	470				470	471	J,K	13001	2000 V
0.7	OR7				5.1	5R1				51	510				510	511			
0.8	OR8				5.6	5R6				56	560				560	561			
0.9	OR9				6.2	6R2	B,C, D	2500V 36	00V	62	620	F,G,	25001/	3600V	620	621			
1.0	1R0				6.8	6R8				68	680	J,K	23000	30007	680	681			
1.1	1R1				7.5	7R5				75	750				750	751	F,G,	1000\/	1500V
1.2	1R2				8.2	8R2				82	820				820	821	J,K	10000	13007
1.3	1R3				9.1	9R1				91	910				910	911			
1.4	1R4			,	10	100				100	101				1000	102			
1.5	1R5				11	110				110	111				1100	112			
1.6	1R6	B,C,	25001	20001	12	120				120	121				1200	122			
1.7	1R7	D	2500V	36000	13	130				130	131				1500	152			
1.8	1R8				15	150				150	151		2500V 3000V	1800	182	F,G,	E00\/	N/A	
1.9	1R9				16	160				160	161	F,G,		2000\/	2200	222	J,K	500V	IN/A
2.0	2R0				18	180				180	181	J,K	2500V	30000	2700	272			
2.1	2R1				20	200	F,G, J,K	2500V 36	00V	200	201								
2.2	2R2				22	220	3,10			220	221								
2.4	2R4				24	240				240	241								
2.7	2R7				27	270				270	271								
3.0	3R0				30				300	301									
3.3	3R3				33	330				330	331	F,G,	450014	20001					
3.6	3R6				36	360				360	361	J,K	1500V	2000V					
3.9	3R9				39	390				390	391								




† Termination Types and Codes

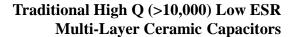

Chip Termination: Codes: W, L, P


Microstrip Termination: Codes: MS, MN


Axial Ribbon Termination: Code: AR, AN

Radial Wire Termination: Codes: RW, RN

Radial Ribbon Termination: Code: RR, FN



Axial Wire Termination: Codes: AW, BN

Termination Code	Magnetic Termination
W ROHS	100% Tin Solder over Nickel Barrier
L	90%Tin/10%Lead Solder over Nickel Barrier
MS ROHS	
AR ROHS	
RR (ROHS)	Silver-Plated Copper
RW ROHS	
AW ROHS	

Termina Code		Non-Magnetic 🔗 Termination
P	RoHS	100% Tin Solder over Copper Barrier
MN	RoHS	
AN	RoHS	
FN	RoHS	Silver-Plated Copper
RN	RoHS	
BN	RoHS	
Note: "N	Non-Magne	tic" means no magnetic materials.

Dimensions - For Termination Types images, see previous page Unit: inch (millimeter)

	Magnetic Termination									
				Capacitor D	imensions		Lead Dimensions			
	Code	Le	ngth	th Width Thickness Overlap		Length	Width	Thickness		
]	Lc	Wc	Tc	В	LL	WL	TL	
W/L	Chip	0.225	+0.025 -0.010	0.250 ± 0.015	0.165 max	$0.020 \sim 0.047$				
W/L	Cllip	(5.72	+0.64 -0.25)	(6.35 ± 0.38)	(4.19 max)	$(0.50 \sim 1.20)$	-	-		
MS	Microstrip						0.500 min	0.240 ± 0.005	0.008 ± 0.001	
AR	Axial Ribbon						(12.70 min)	(6.1 ± 0.13)	(0.2 ± 0.025)	
RR	Radial Ribbon		$\pm 0.025 \pm 0.64)$	0.250 ± 0.015 (6.35 ± 0.38)	0.150 max (3.81 max)	-	0.354 min (9.00 min)	0.118 ± 0.005 (3.00 ± 0.13)	$0.012 \pm 0.001 \\ (0.3 \pm 0.025)$	
RW	Radio Wire						0.709 min (18.00 min)	Dia. $= 0.0$	31 ± 0.004	
AW	Axial Wire						0.906 min (23.00 min)	Dia. = $(0.$	80 ± 0.10)	

⊘	Non-Magnetic Termination								
				Capacitor D	imensions		Lead Dimensions		
	Code	Le	ngth	Width	Thickness	Overlap	Length	Width	Thickness
]	Lc	Wc	Tc	В	LL	WL	TL
P	Claire	0.225	+0.025 -0.010	0.250 ± 0.015	0.165 max	$0.020 \sim 0.047$			
	Chip	(5.72	^{+0.64} _{-0.25})	(6.35 ± 0.38)	(4.19 max)	$(0.50 \sim 1.20)$	-	-	-
MN	Microstrip						0.500 min	0.240 ± 0.005	0.008 ± 0.001
AN	Axial Ribbon						(12.70 min)	(6.1 ± 0.13)	(0.2 ± 0.025)
FN	Radial Ribbon		$\pm 0.025 \pm 0.64)$	0.250 ± 0.015 (6.35 ± 0.38)	0.150 max (3.81 max)	-	0.354 min (9.00 min)	0.118 ± 0.005 (3.00 ± 0.13)	$0.012 \pm 0.001 \\ (0.3 \pm 0.025)$
RN	Radio Wire		ŕ	,			0.709 min (18.00 min)	Dia. = 0.0	31 ± 0.004
BN	Axial Wire	•					0.906 min (23.00 min)	Dia. = $(0.$	80 ± 0.10)

Note: Non-Magnetic means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.

Electrical Specifications

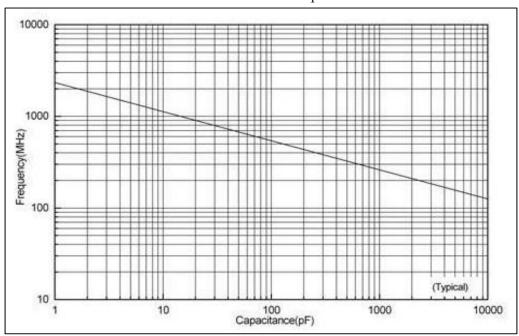
Quality Factor (Q)	Greater than 10,000 at 1 MHz
Insulation Resistance (IR)	Test Voltage: 500V 10 ⁵ Megaohms min. @ +25°C 10 ⁴ Megaohms min. @ +125°C
Rated Voltage	See Rated Voltage in Capacitance Table
Dielectric Withstanding Voltage (DWV)	250% of Rated Voltage of 5 seconds, Rated Voltage ≤ 500VDC 150% of Voltage for 5 seconds, 500VDC <rated 120%="" 1250="" 5="" for="" of="" rated="" seconds,="" vdc="" voltage="" ≤=""> 1250 VDC</rated>
Operating Temperature Range	-55°C to 200°C
Temperature Coefficient (TC)	C: -55°C to 125°C
Capacitance Drift	±0.02% or ±0.02pF, whichever is greater
Piezoelectric Effects	None
Termination Type	See Termination Type Table

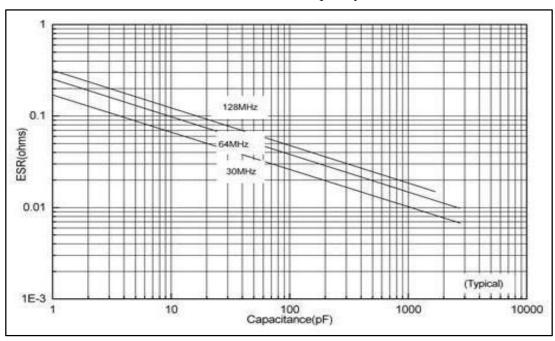
Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

÷ Environmental Specifications

α	• 📭	4 •
S In	acitic	ation
OD	\mathbf{u}	auvu

Test Parameters

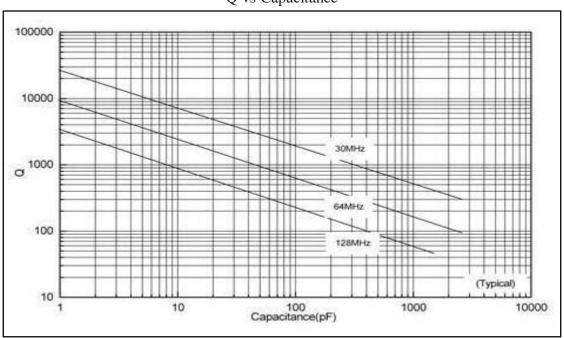

	-	
Thermal Shock	DWV: The initial Value IR: Shall not be less than 30% of the initial value. Capacitance Change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 200°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.
Moisture Resistance	No more than 0.5% or 0.5pF, whichever is greater.	MIL-STD-202, Method 106
Humidity (Steady State)	DWV: The initial Value IR: The initial value. Capacitance Change: No more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A With 1.5Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	IR: Shall not be less than 30% of the initial value. Capacitance Change: No more than 2.0% or 0.5pF, whichever is greater.	MIL-STD-202, Method 108. For 2000 hours, at 200°C. 200% of Voltage for Capacitors, Rated Voltage ≤ 500VDC; 120% of Voltage for Capacitors, 500VDC< Rated Voltage ≤1250VDC; 100% for Voltage for Capacitors, Rated Voltage >1250VDC
Terminal Strength	Force: 20lbs typical, 10lbs. Minimum. Duration Time: 5 to 10 seconds	MIL-STD-202, Method 211A, Test Condition A. Applied a force and maintained for a period of 5 to 10 seconds. The force shall be in the direction of the axes of the terminations.


Series Resonance vs. Capacitance

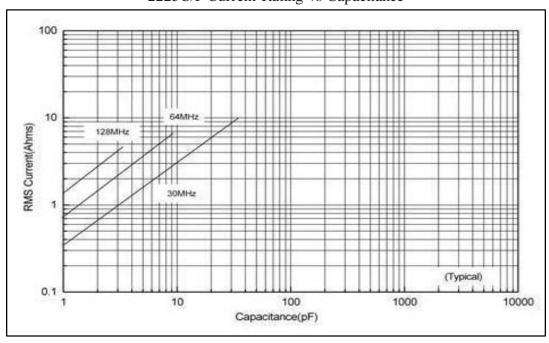
Series Resonance vs. Capacitance

ESR vs. Frequency

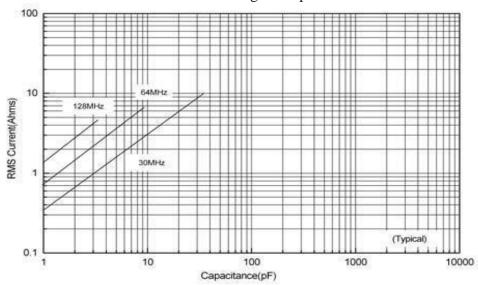
2225C/P ESR vs Frequency



PPI2225CPDATA010324RevA


Q vs. Capacitance

Q vs Capacitance


Current Rating vs. Capacitance

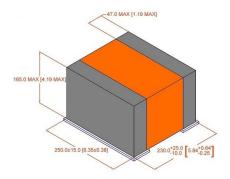
2225C/P Current Rating vs Capacitance

Current Rating vs. Capacitance

2225C/P Current Rating vs Capacitance

Current limits can depend on two different criteria. The first Voltage Limited Current ($I_{volt \, lim}$, represented by the solid line), the second is Power Dissipation Limited Current ($I_{pow \, diss}$).

$$I_{\text{volt lim}} = \frac{\sqrt{2}}{2} I_{peak} = \frac{\sqrt{2}}{2} \times \frac{V_{rated}}{X_C} = \sqrt{2} \pi FCV_{rated}$$


 $I_{\text{pow diss}} = \sqrt{\frac{P_{dissipation}}{ESR}}$ (If the thermal resistance of the mounting surface is 15°C/W, then you will reach the power dissipated limit of 4W)

† Capacitor Application Program

PPI's brand new online Capacitor Application Program (C.A.P.) helps Engineers and Designers select capacitors according to parameters such as cap value and frequency. C.A.P. allows engineers to insert capacitors requirements (Cap value, Frequency), producing Scattering Matrices (S2P) Charts while providing options (Case Size, Terminations, Mounting), and parameters (ESR, Q, Impedance) along with Datasheets. Once engineers have determined their capacitor requirements, C.A.P. also includes online Requests For Quotes (RFQs) and/or sample requests.

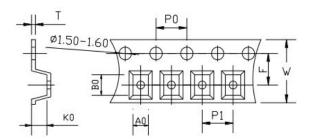
Recommended Land Pattern Dimensions

Regarding Landing Patterns, please refer to IPC-7351B (table 3-5, 3-6).

Custom Assemblies

Passive Plus offers Capacitor Assemblies for high power requirements. Typical assemblies are configured in series and/or parallel combinations, producing higher voltage/current handling capabilities, extended capacitance range and tighter tolerances.

To get started, simply send us either a mechanical drawing or circuit conditions and we can recommend a solution. All components are 100% upscreened for Partial Discharge and Sonoscanned. All assemblies include a 100hr Military burn in.



Tape & Reel Specifications (mm)

Orientation	Measurement Unit	W	P0	P1	T	F	Minimum Qty per Reel	Std Qty per Reel	Tape Material
Н	in.	0.630 0.	.157 0.4	472 0.	012 0	.295	500	500	Plastic
	mm	16.00 4	1.00 12	.00 0	.30	7.50	300	300	1 lastic
V	in.	0.630 0.	.157 0.3	315 0.	020 0	.295	500	500	Plastic
V	mm	16.00 4	1.00 8.	.00 0	.50 7	7.50	300	300	Tiastic

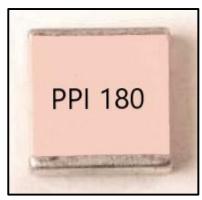
$A_0B_0K_0$

- Determined by component size. Typical clearance between the cavity and the component is: .50 (.002) min to .65 (.026) max for 12mm tape.
- \bullet The component cannot rotate more than 20° within the determined cavity.

3838C/P (0.380" x 0.380")

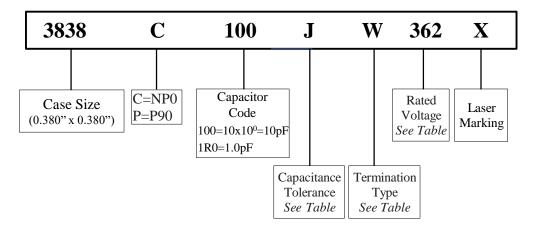
Product Features

- High Q
- High RF Current/Voltage
- Ultra Stable Performance
- Capacitance Range: 0.5pF to 5100pF
- Working Voltage: 3600V
- Extended Voltage: 7200V


† Product Applications

Typical Functional Applications:

- Tuning Bypass Coupling
- D.C. Blocking Impedance Matching


Typical Circuit Applications:

- HF/RF Power Amplifiers
- Antenna Tuning Plasma Chambers
- Medical Equipment Transmitters

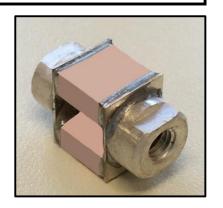
Marking shown for illustration purposes only. Actual marking may differ.

Part Numbering

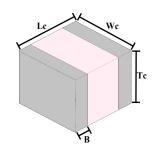
Capacitance Tolerance Codes

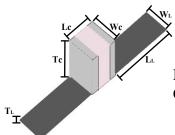
Code	A	В	C	D	F	G	J	K
Tol.	±0.05pF	±0.1pF	±0.25pF	±0.5pF	$\pm 1\%$	±2%	±5%	±10%

Voltage Codes

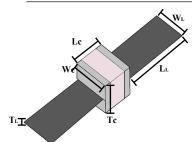

Voltage	Code
500V	501
1000V	102
2500V	252
3600V	362
7200V	722

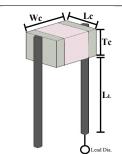
≠ 3838C/P Capacitance Values

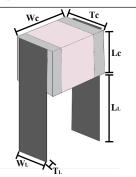

Special capacitances, tolerances and WVDC are available. Please contact PPI.

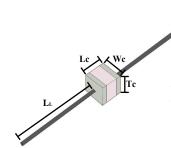

Cap.	Cap	Tol.	Rated WVDC Std. Ext.	Cap.	Cap	Tol.	Rated WVDC Std. Ext.	Cap.	Cap Code	Tol.		WVDC Ext.	Cap.	Cap	Tol.	Rated WVDC
pF 0.5	Code OR5		Stu. Ext.	pF 4.7	Code 4R7		Stu. Ext.	pF 51	510		Stu.	EXI.	pF 560	Code 561		WVDC
0.6	OR6			5.1	5R1			56	560				620	621	F,G,	
0.0	OR7			5.6	5R6			62	620				680	681	J,K	2500V
0.7	OR8			6.2	6R2	B,C,		68	680				750	751		
0.9	OR9			6.8	6R8	D,C,	3600V 7200V	75	750				820	821		
1.0	1R0			7.5	7R5			82	820				910	911		
1.1	1R1			8.2	8R2			91	910	F,G,			1000	102		
1.2	1R2			9.1	9R1			100	101	J,K	3600V	7200V	1100	112		
1.3	1R3			10	100			110	111				1200	122	F,G,	1000V
1.4	1R4			11	110			120	121				1500	152	J,K	
1.5	1R5			12	120			130	131				1800	182		
1.6	1R6			13	130			150	151				2200	222		
1.7	1R7	B,C,	3600V 7200V	15	150			160	161				2400	242		
1.8	1R8	D		16	160			180	181				2700	272		
1.9	1R9			18	180			200	201				3000	302		
2.0	2R0			20	200			220	221				3300	332		
2.1	2R1			22	220	F,G,	3600V 7200V	240	241				3600	362	F,G,	
2.2	2R2			24	240	J,K		270	271	F,G,			3900	392	J,K	500V
2.4	2R4			27	270			300	301	J,K	3600V	N/A	4300	432		
2.7	2R7			30	300			330	331				4700	472		
3.0	3R0		33 33 36 36	330			360	361				5100	512			
3.3	3R3			36	360			390	391							
3.6	3R6			39	390			430	431							
3.9	3R9			43	430			470	471	F,G, J,K	2500V	N/A				
4.3	4R3			47	470			510	511	3,10						

3838C/P (0.380" x 0.380")


Termination Types and Codes


Chip Termination: Codes: W, L, P


Microstrip Termination: Codes: MS, MN


Axial Ribbon Termination: Code: AR, AN

Radial Wire Termination: Codes: RW, RN

Radial Ribbon Termination: Code: RR, FN

Axial Wire Termination: Codes: AW, BN

Termination Code	Magnetic Termination
W ROHS	100% Tin Solder over Nickel Barrier
L	90%Tin/10%Lead Solder over Nickel Barrier
MS (ROHS)	
AR ROHS	
RR (ROHS)	Silver-Plated Copper
RW ROHS	
AW ROHS	

Termination Code	Non-Magnetic 🔗 Termination
P ROHS	100% Tin Solder over Copper Barrier
MN (ROHS)	
AN ROHS	
FN ROHS	Silver-Plated Copper
RN ROHS	
BN ROHS	
Note: "Non-Magne	tic" means no magnetic materials.

3838C/P (0.380" x 0.380")

Dimensions - For Termination Types images, see previous page Unit: inch (millimeter)

	Magnetic Termination								
	Capacitor Dimensions							Lead Dimension	ons
	Code	Le	ngth	Width Thickness		Overlap	Length	Width	Thickness
		-	Lc	Wc	Tc	В	LL	WL	TL
W/L	Chin	0.380	+0.015 -0.010	0.380 ± 0.010	0.170 max	$0.024 \sim 0.059$			
W/L	Chip	(9.65	+0.38 -0.25)	(9.65 ± 0.25)	(4.32 max)	$(0.60 \sim 1.50)$	-	-	-
MS	Microstrip						0.728 min	0.350 ± 0.020	0.008 ± 0.001
IVIS	Microsurp	-					(18.50 min)	(8.89 ± 0.50)	(0.20 ± 0.025)
AR	Axial						0.728 min	0.315 ± 0.010	0.008 ± 0.001
AK	Ribbon	-					(18.50 min)	(8.00 ± 0.25)	(0.20 ± 0.025)
RR	Radial	0.380	+0.015	0.380 ± 0.010	0.177 max	-	0.354 min	0.118 ± 0.005	0.012 ± 0.001
	Ribbon	(9.65	+0.38 -0.25	$^{+0.38}_{-0.25}$) (9.65 ± 0.25) (4.50 max)		(9.00 min)	(3.00 ± 0.13)	(0.3 ± 0.025)	
RW	Radio						0.709 min		
	Wire	_					(18.00 min)	Dia. $= 0.0$	31 ± 0.004
AW	Axial						0.906 min	Dia. = $(0.$	80 ± 0.10)
AW	Wire						(23.00 min)		

②				Non	-Magnetic Te	rmination			⊘
				Capacitor D	imensions		Lead Dimensions		
	Code	Le	ngth	Width	Thickness	Overlap	Length	Width	Thickness
			Lc	Wc	Tc	В	LL	WL	TL
D	Ch:	0.380	+0.015 -0.010	0.380 ± 0.010	0.170 max	$0.024 \sim 0.059$			
P	Chip	(9.65	+0.38 -0.25)	(9.65 ± 0.25)	(4.32 max)	$(0.60 \sim 1.50)$	-	-	-
MN	Microstrip						0.728 min	0.350 ± 0.020	0.008 ± 0.001
IVIIN	Microsurp						(18.50 min)	(8.89 ± 0.50)	(0.20 ± 0.025)
AN	Axial						0.728 min	0.315 ± 0.010	0.008 ± 0.001
AIN	Ribbon	_					(18.50 min)	(8.00 ± 0.25)	(0.20 ± 0.025)
FN	Radial	0.380	+0.015 -0.010	0.380 ± 0.010	0.177 max	_	0.354 min	0.118 ± 0.005	0.012 ± 0.001
111	Ribbon	(9.65	+0.38 -0.25	(9.65 ± 0.25)	(4.50 max)		(9.00 min)	(3.00 ± 0.13)	(0.3 ± 0.025)
RN	Radio	•					0.709 min		
IXIN	Wire						(18.00 min)	Dia. = 0.0	31 ± 0.004
BN	Axial	•					0.906 min	Dia. $= (0.$	80 ± 0.10)
DN	Wire						(23.00 min)		

Note: Non-Magnetic means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.

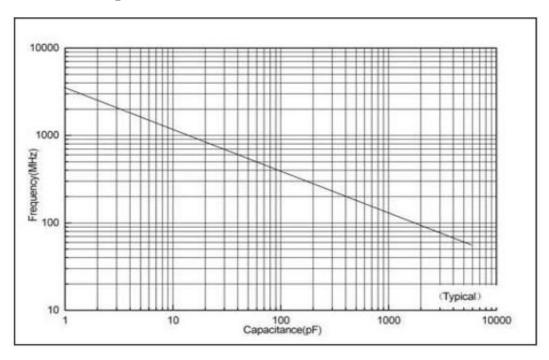
‡ Electrical Specifications

Quality Factor (Q)	Greater than 10,000 at 1 MHz
Insulation Resistance (IR)	Test Voltage: 500V 10 ⁵ Megaohms min. @ +25°C 10 ⁴ Megaohms min. @ +125°C
Rated Voltage	See Rated Voltage in Capacitance Table
Dielectric Withstanding Voltage (DWV)	250% of Rated Voltage of 5 seconds, Rated Voltage ≤ 500VDC 150% of Voltage for 5 seconds, 500VDC <rated 120%="" 1250="" 5="" for="" of="" rated="" seconds,="" vdc="" voltage="" ≤=""> 1250 VDC</rated>
Operating Temperature Range	-55°C to 200°C
Temperature Coefficient (TC)	C: -55°C to 125°C 0±30ppm/°C; >125°C to 200°C 0±60ppm/°C P: -55°C to 200°C +90±20ppm/°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater
Piezoelectric Effects	None
Termination Type	See Termination Type Table

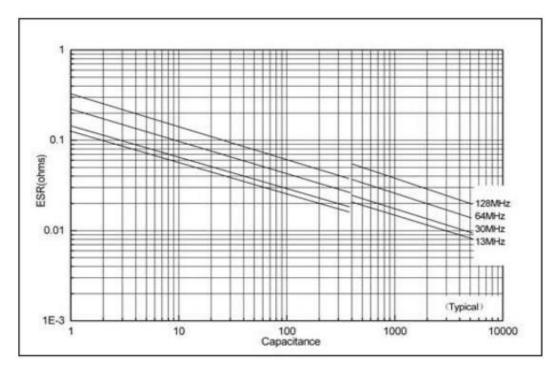
‡ Environmental Specifications

Specification

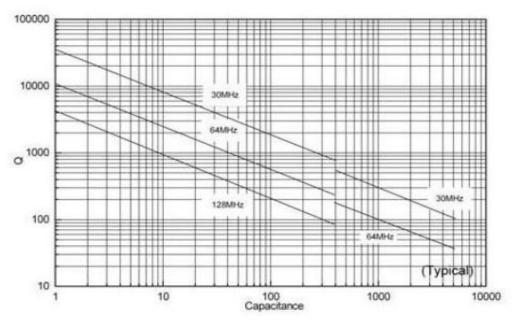
Test Parameters

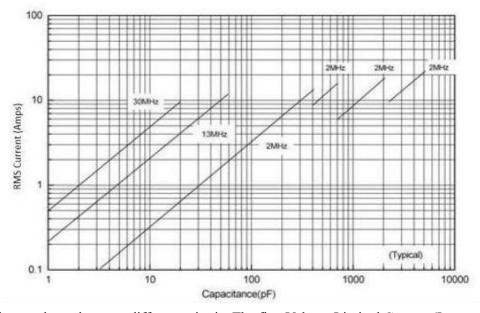

	-	
Thermal Shock	DWV: The initial value IR: Shall not be less than 30% of the initial value. Capacitance Change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 200°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.
Moisture Resistance	No more than 0.5% or 0.5pF, whichever is greater.	MIL-STD-202, Method 106
Humidity (Steady State)	DWV: The initial value IR: The initial value Capacitance Change: No more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A With 1.5Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	IR: Shall not be less than 30% of the initial value. Capacitance Change: No more than 2.0% or 0.5pF, whichever is greater.	MIL-STD-202, Method 108. For 2000 hours, at 200°C. 200% of Voltage for Capacitors, Rated Voltage ≤ 500VDC; 120% of Voltage for Capacitors, 500VDC< Rated Voltage ≤1250VDC; 100% for Voltage for Capacitors, Rated Voltage >1250VDC
Terminal Strength	Force: 20lbs typical, 10lbs. min. Duration Time: 5 to 10 seconds	Applied a force and maintained for a period of 5 to 111 seconds

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.



Series Resonance vs. Capacitance


ESR vs. Frequency



≠ Q vs. Capacitance

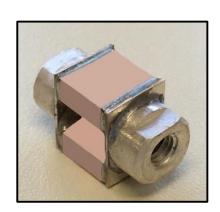
‡ Current Rating vs. Capacitance

www.passiveplus.com

Current limits can depend on two different criteria. The first Voltage Limited Current ($I_{volt \, lim}$, represented by the solid line), the second is Power Dissipation Limited Current ($I_{pow \, diss}$).

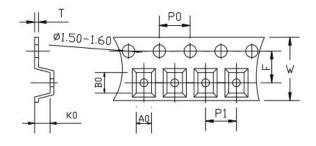
$${\rm I_{volt\,lim}} = \frac{\sqrt{2}}{2}I_{peak} = \frac{\sqrt{2}}{2} \times \frac{V_{rated}}{X_C} = \sqrt{2}\pi FCV_{rated}$$

 $I_{pow \, diss} = \sqrt{\frac{P_{\it dissipation}}{\it ESR}} \, (\text{If the thermal resistance of the mounting surface is } 12^{\circ}\text{C/W}, \text{ then you will reach the power dissipated limit of 5W})$


Recommended Land Pattern Dimensions

Regarding Landing Patterns, please refer to IPC-7351B (table 3-5, 3-6).

Custom Assemblies


Passive Plus offers Capacitor Assemblies for high power requirements. Typical assemblies are configured in series and/or parallel combinations, producing higher voltage/current handling capabilities, extended capacitance range and tighter tolerances.

To get started, simply send us either a mechanical drawing or circuit conditions and we can recommend a solution. All components are 100% upscreened for Partial Discharge and Sonoscanned. All assemblies include a 100hr Military burn in.

Tape & Reel Specifications (mm)

Ori	entation	Measurement Unit	·	W	P0	P1	Т	F	Minimum Qty per Reel	Std Qty per Reel	Tape Material
Н	-	in. mm	0.630 16.00	0.15° 4.00			0.012	0.295 7.50	50	200	Plastic

- Determined by component size. Typical clearance between the cavity and the component is: .50 (.002) min to .65 (.026) max for 12mm tape.
- The component cannot rotate more than 20° within the determined cavity.

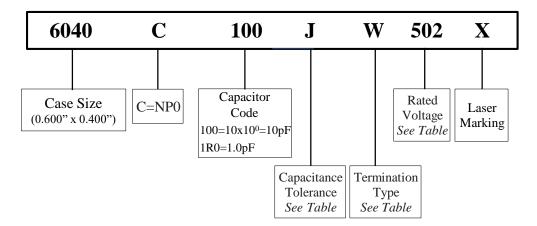
PPI3838CPDATA010324RevA

UHF/RF High-Q Power Transmitter Multi-Layer Ceramic Capacitors

6040C (0.600" x 0.400")

Product Features

- High Q
- High RF Current/Voltage
- Ultra Stable Performance
- Capacitance Range: 1.0pF to 6800pF
- Working Voltage: 5000V • Extended Voltage: 8000V


Typical Circuit Applications

- Semiconductor Manufacturing
- High Energy Power Transfers
- Plasma Chambers
- Medical Equipment

Marking shown for illustration purposes only. Actual marking may differ.

Part Numbering

Capacitance Tolerance Codes

Code	В	C	D	F	G	J	K
Tol.	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

Voltage Codes

Voltage	Code
1000V	102
2000V	202
3000V	302
5000V	502
8000V	802

sales@passiveplus.com

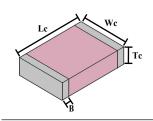
PPI6040CDATA010324RevA

UHF/RF High-Q Power Transmitter Multi-Layer Ceramic Capacitors

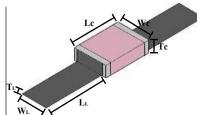
6040C (0.600" x 0.400")

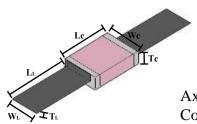
≠ 6040C Capacitance Values

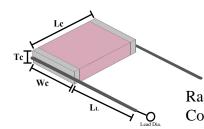
For special capacitances, tolerances and WVDC, please contact PPI.

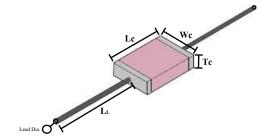


Marking shown for illustration purposes only. Actual marking may differ.

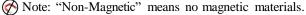

Cap.	Сар	Tol.	Rated WVDC	Cap.	Сар	Tol.	Rated	WVDC	Cap.	Сар	Tol.	Rated	WVDC
рF	Code	101.	Std. Ext.	pF	Code	101.	Std.	Ext.	pF	Code	101.	Std.	Ext.
1.0	1R0			39	390				1500	152	F.C		
1.2	1R2			47	470				1800	182	F,G, J,K	2000V	3000V
1.5	1R5			56	560	F,G,	5000V	8000V	2200	222	ŕ		
1.8	1R8			68	680	J,K	30001	0000	2700	272			
2.2	2R2			82	820				3300	332			
2.7	2R7	B,C,	5000V 8000V	100	101				4700	472	F,G,	1000V	2000V
3.3	3R3	D	30001 0000	120	121				5100	512	J,K	10001	20001
3.9	3R9			150	151			5600	562				
4.7	4R7			180	181			6800	682				
5.6	5R6		220 221										
6.8	6R8			270	271	F,G,	3000V 5000V	5000V					
8.2	8R2			330	331	J,K	30001	3000					
10	100			390	391								
12	120			470	471								
15	150	E G		560	561								
18	180	F,G, J,K	5000V 8000V	680	681								
22	220			820	821	E G							
27	270			1000	102	F,G, J,K	2000V	3000V					
33	330			1200	122								


† Termination Types and Codes


Chip Termination: Codes: **W**, **L**, **P**


Microstrip Termination: Codes: **MS**, **MN**

Axial Ribbon Termination: Code: **AR**, **AN**


Radial Wire Termination: Codes: **RW**, **RN**

Axial Wire Termination: Codes: **AW**, **BN**

Termination Code	Magnetic Termination
W ROHS	100% Tin Solder over Nickel Barrier
L	90%Tin/10%Lead Solder over Nickel Barrier
MS (ROHS)	
AR ROHS	
RW ROHS	Silver-Plated Copper
AW ROHS	

Termination Code	Non-Magnetic <i>©</i> Termination
P Rohs	100% Tin Solder over Copper Barrier
MN (ROHS)	
AN ROHS	
RN ROHS	Silver-Plated Copper
BN ROHS	
	otia? maana na maanatia matariala

UHF/RF High-Q Power Transmitter Multi-Layer Ceramic Capacitors

6040C (0.600" x 0.400")

Dimensions - For Termination Types images, see previous page Unit: inch (millimeter)

	Magnetic Termination								
	Capacitor Dimensions Lead Dimensions								
	Code	Le	ngth	Width Thickness		hickness Overlap		Width	Thickness
]	Lc	Wc	Tc	В	LL	WL	TL
W/L	Chip	0.614	+0.015 -0.010	0.433 ± 0.010	0.154 ± 0.008	0.063 max			
W/L	Cllip	(15.6	+0.38 -0.25)	(11.0 ± 0.25)	(3.90 ± 0.20)	(1.60 max)	_	-	-
MS	Microstrip						0.787 min	0.350 ± 0.010	0.008 ± 0.001
1015	Microsurp						(20.0 min)	(8.89 ± 0.50)	(0.20 ± 0.025)
	Axial						0.787 min	0.350 ± 0.010	0.008 ± 0.001
AR	Ribbon	0.614	+0.015 -0.010	0.433 ± 0.010	0.154 ± 0.008		(20.0 min)	(8.89 ± 0.50)	(0.20 ± 0.025)
RW	Radio Wire	(15.6	+0.38 -0.25)	(11.0 ± 0.25)	(3.90 ± 0.20)	-	0.787 min (20.0 min)	Dia. = 0.0	30 ± 0.004
	Axial						0.984 min		80 ± 0.10)
AW	Wire						(25.00 min)	= 140.	

⊘				No	n-Magnetic Teri	nination			⊘
				Capacitor 1	Dimensions		Lead Dimensions		
	Code	Le	ngth	Width	Thickness	Overlap	Length	Width	Thickness
			Lc	Wc	Tc	В	LL	WL	TL
P	Chin	0.614	+0.015 -0.010	0.433 ± 0.010	0.154 ± 0.008	0.063 max			
Г	Chip	(15.6	+0.38 -0.25)	(11.0 ± 0.25)	(3.90 ± 0.20)	(1.60 max)	_	-	-
MN	Mionostnin						0.787 min	0.350 ± 0.010	0.008 ± 0.001
IVIIN	Microstrip	_					(20.0 min)	(8.89 ± 0.50)	(0.20 ± 0.025)
	Axial	-					0.787 min	0.350 ± 0.010	0.008 ± 0.001
AN	Ribbon	0.614	+0.015 -0.010	0.433 ± 0.010	0.154 ± 0.008		(20.0 min)	(8.89 ± 0.50)	(0.20 ± 0.025)
			+0.38			-			
RN	Radio	(15.6	-0.25	(11.0 ± 0.25)	(3.90 ± 0.20)		0.787 min		
	Wire						(20.0 min)	Dia. = 0.0	30 ± 0.004
DN	Axial	•					0.984 min	Dia. $= (0.$	80 ± 0.10)
BN	Wire						(25.00 min)		,

Note: Non-Magnetic means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.

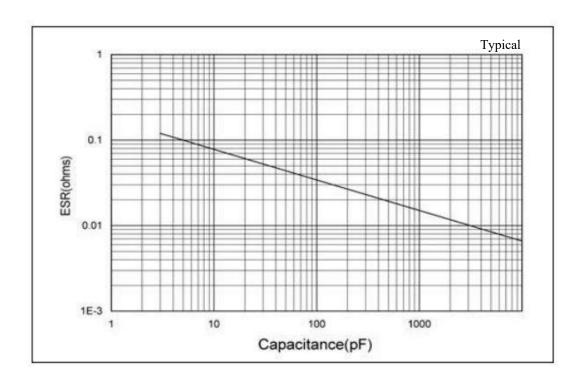
Electrical Specifications

Quality Factor (Q)	No less than 1000pF, Q value more than 2000, Test Frequency 1MHz; More than 1000pF, Q value more than 2000, Test Frequency 1MHz				
Insulation Resistance (IR)	Test Voltage: 500V 10 ⁵ Megaohms min. @ +25°C 10 ⁴ Megaohms min. @ +125°C				
Rated Voltage	See Rated Voltage in Capacitance Table				
Dielectric Withstanding Voltage (DWV)	250% of Voltage of 5 seconds, Rated Voltage ≤ 500VDC 150% of Voltage for 5 seconds, 500VDC <rated 120%="" 1250="" 5="" for="" of="" rated="" seconds,="" vdc="" voltage="" ≤=""> 1250 VDC</rated>				
Operating Temperature Range	-55°C to 175°C				
Temperature Coefficient (TC)	-55°C to 125°C				
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater				
Piezoelectric Effects	None				
Termination Type	See Termination Type Table				

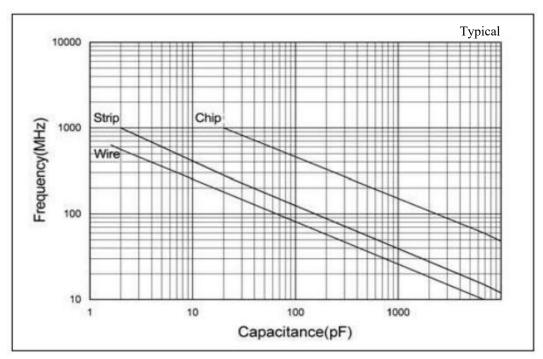
‡ Environmental Specifications

Specification

Test Parameters

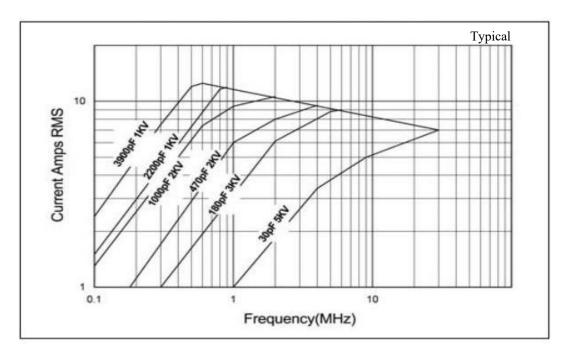

	-	
Thermal Shock	DWV: The initial value IR: Shall not be less than 30% of the initial value. Capacitance Change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 175°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.
Moisture Resistance	No more than 0.5% or 0.5pF, whichever is greater.	MIL-STD-202, Method 106
Humidity (Steady State)	DWV: The initial value IR: The initial value Capacitance Change: No more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A With 1.5Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	IR: Shall not be less than 30% of the initial value. Capacitance Change: No more than 2.0% or 0.5pF, whichever is greater.	MIL-STD-202, Method 108. For 2000 hours, at 125°C. 200% of Voltage for Capacitors, Rated Voltage ≤ 500VDC; 120% of Voltage for Capacitors, 500VDC< Rated Voltage ≤1250VDC; 100% for Voltage for Capacitors, Rated Voltage >1250VDC
Terminal Strength	Force: 25lbs typical, 20lbs. min. Duration Time: 5 to 10 seconds	Applied a force and maintained for a period of 5 to 111 seconds

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

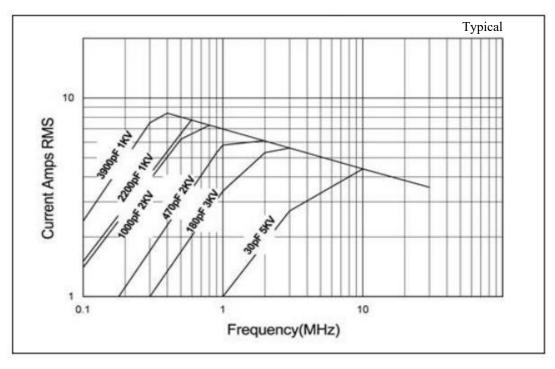


ESR vs. Capacitance Measured @ 30MHz

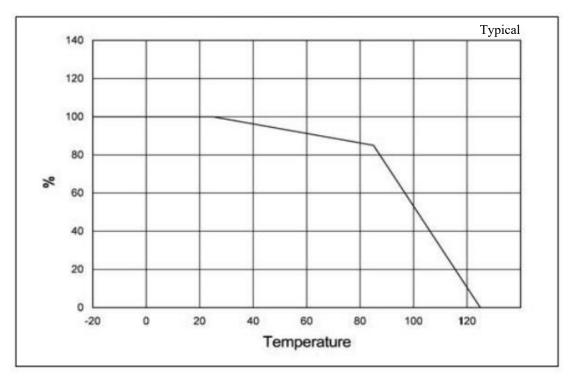
Self Resonant Frequency vs. Capacitance


sales@passiveplus.com

PPI6040CDATA010324RevA



Strip Terminals Rated Current vs. Frequency


Wire Terminals Rated Current vs. Frequency

≠ % Maximum Current vs. Ambient Temperature

Recommended Land Pattern Dimensions

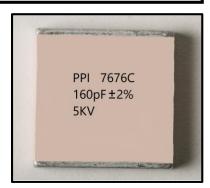
Regarding Landing Patterns, please refer to IPC-7351B (table 3-5, 3-6).

Custom Assemblies

Passive Plus offers Capacitor Assemblies for high power requirements. Typical assemblies are configured in series and/or parallel combinations, producing higher voltage/current handling capabilities, extended capacitance range and tighter tolerances.

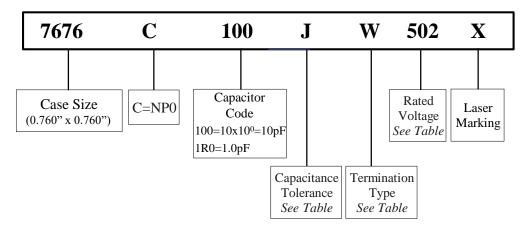
To get started, simply send us either a mechanical drawing or circuit conditions and we can recommend a solution. All components are 100% upscreened for Partial Discharge and Sonoscanned. All assemblies include a 100hr Military burn in.

UHF/RF High-Q Power Transmitter Multi-Layer Ceramic Capacitors


7676C (0.760" x 0.760")

Product Features

- High Q
- High RF Current/Voltage
- Ultra Stable Performance
- Capacitance Range: 1.0pF to 20000pF
- Working Voltage: 5000VExtended Voltage: 8000V


† Typical Circuit Applications

- Semiconductor Manufacturing
- High Energy Power Transfers
- Plasma Chambers
- Medical Equipment

Marking shown for illustration purposes only. Actual marking may differ.

Part Numbering

Capacitance Tolerance Codes

Code	В	C	D	F	G	J	K
Tol.	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

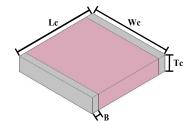
≠ Voltage Codes

Voltage	Code
1000V	102
2000V	202
3000V	302
5000V	502
8000V	802

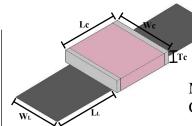
 $7676C (0.760" \times 0.760")$

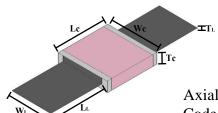
≠ 7676C Capacitance Values

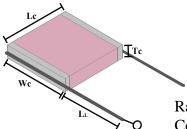
Special capacitances, tolerances and WVDC are available. Please contact PPI.

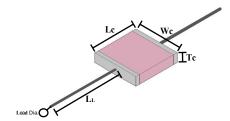


Marking shown for illustration purposes only. Actual marking may differ.

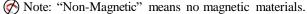

Cap.	Сар	Tol.	Rated	WVDC	Cap.	Сар	Tal	Rated	WVDC	Cap.	Сар	Tal	Rated	WVDC
pF	Code	101.	Std.	Ext.	pF	Code	Tol.	Std.	Ext.	рF	Code	Tol.	Std.	Ext.
1.0	1R0				33	330				1000	102			
1.2	1R2				39	390	F,G, J,K	5000V 8000V	1200	122				
1.5	1R5				47	470			1500	152				
1.8	1R8				56	560				1800	182	6.1		
2.2	2R2		5000V	00V 8000V	68	680				2200	222	G,J, K	3000V	5000V
2.7	2R7	B,C,			82	820			8000V	2700	272			
3.3	3R3	D			100	101	·			3300	332			
3.9	3R9				120	121				4700	472			
4.7	4R7				150	151				5100	512			
5.6	5R6				180	181				5600	562			
6.8	6R8				220	221				6800	682	6.1		
8.2	8R2				270	271				7500	752	G,J, K	1000V	3000V
10	100				300	301				8200	822			
12	120				390	391	F.C			10000	103			
15	150	F,G, J,K	5000V 800	8000\/	470	471	F,G, J,K	3000V	5000V	12000	123			
18	180			56	560	561	,			15000	153	G,J,	10001/	2000V
22	220				680	681				18000	183	K	1000	2000
27	270				820	821				20000	203			


Termination Types and Codes


Chip Termination: Codes: W, L, P


Microstrip Termination: Codes: MS, MN

Axial Ribbon Termination: Code: AR, AN


Radial Wire Termination: Codes: RW, RN

Axial Wire Termination: Codes: AW, BN

Termination Code	Magnetic Termination				
W ROHS	100% Tin Solder over Nickel Barrier				
L	90%Tin/10%Lead Solder over Nickel Barrier				
MS (ROHS)					
AR ROHS					
RW ROHS	Silver-Plated Copper				
AW ROHS					

Termination Code	Non-Magnetic 🔗 Termination				
P (**)	100% Tin				
ROHS	Solder over Copper Barrier				
MN (ROHS)					
AN (ROHS)					
RN (ROHS)	Silver-Plated Copper				
BN (ROHS)					
A Natar William Manage	atio? magaza na magazatia mataniala				

sales@passiveplus.com

PPI7676CDATA120823RevB

UHF/RF High-Q Power Transmitter Multi-Layer Ceramic Capacitors

7676C (0.760" x 0.760")

Dimensions - For Termination Types images, see previous page Unit: inch (millimeter)

	Magnetic Termination									
				Capacitor I	Dimensions			Lead Dimension	ons	
	Code	Le	ngth	Width	Thickness	Overlap	Length	Width	Thickness	
			Lc	Wc	Tc	В	LL	WL	TL	
W/L	Chip	0.760	+0.015 -0.010	0.760 ± 0.010	0.197 max	$0.024 \sim 0.059$	-			
W/L		(19.3	+0.38 -0.25)	(19.3 ± 0.25)	(5.00 max)	$(0.60 \sim 1.50)$		_	-	
MS	Microstrip						0.748 min (19.0 min)	0.591 ± 0.010 (15.00 ± 0.25)		
AR	Axial Ribbon	0.760	+0.015 -0.010	0.760 ± 0.010	0.197 max			0.591 ± 0.010 (15.00 ± 0.25)		
RW	Radio Wire	(19.3	+0.38 -0.25)	(19.3 ± 0.25)	(5.00 max)	-	0.748 min (19.0 min)	Dia. = 0.0	31 ± 0.006	
AW	Axial Wire	-					0.906 min (23.00 min)	`	80 ± 0.15)	

(rmination	I Land Dimansions				
				Capacitor I	Dimensions	mensions Lead Dim				
	Code	Le	ength	Width	Thickness	Overlap	Length	Width	Thickness	
			Lc	Wc	Tc	В	LL	WL	TL	
Р	Chin	0.760	+0.015 -0.010	0.760 ± 0.010	0.197 max	$0.024 \sim 0.059$				
r	Chip	(19.3	+0.38 -0.25)	(19.3 ± 0.25)	(5.00 max)	$(0.60 \sim 1.50)$	-	-		
MN	Microstrip						0.748 min (19.0 min)	0.591 ± 0.010 (15.00 ± 0.25)		
AN	Axial Ribbon	0.760	+0.015 -0.010	0.760 ± 0.010	0.197 max		0.748 min (19.0 min)	0.591 ± 0.010 (15.00 ± 0.25)		
RN	Radio Wire	(19.3	+0.38 -0.25)	(19.3 ± 0.25)	(5.00 max)	-	0.748 min (19.0 min)	Dia. = 0.0	31 ± 0.006	
BN	Axial Wire	-					0.906 min (23.00 min)	`	80 ± 0.15)	

Note: Non-Magnetic means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.

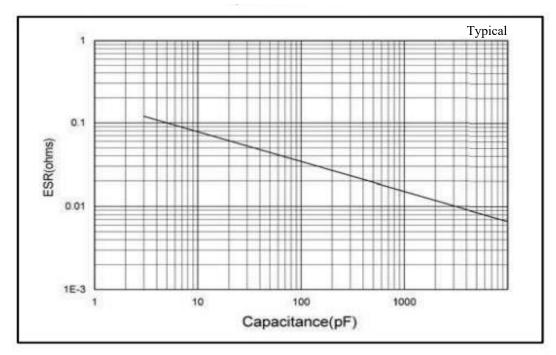
÷ Electrical Specifications

Quality Factor (Q)	No less than 1000pF, Q value more than 2000, Test Frequency 1MHz; More than 1000pF, Q value more than 2000, Test Frequency 1kHz				
Insulation Resistance (IR)	Test Voltage: 500V 10 ⁵ Megaohms min. @ +25°C 10 ⁴ Megaohms min. @ +125°C				
Rated Voltage	See Rated Voltage in Capacitance Table				
Dielectric Withstanding Voltage (DWV)	250% of Voltage of 5 seconds, Rated Voltage ≤ 500VDC 150% of Voltage for 5 seconds, 500VDC <rated 1250="" vdc<br="" voltage="" ≤="">120% of Voltage for 5 seconds, Rated Voltage > 1250 VDC</rated>				
Operating Temperature Range	-55°C to 175°C				
Temperature Coefficient (TC)	-55°C to 125°C				
Capacitance Drift	$\pm 0.2\%$ or ± 0.05 pF, whichever is greater				
Piezoelectric Effects	None				
Termination Type	See Termination Type Table				

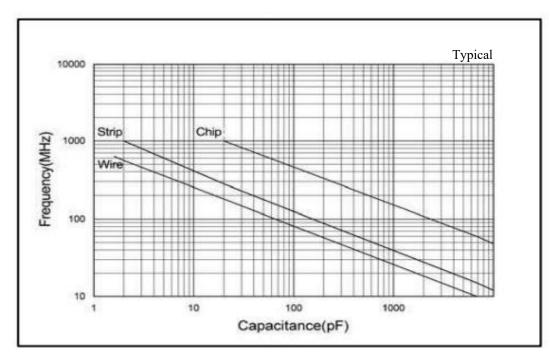
Environmental Specifications

Specification

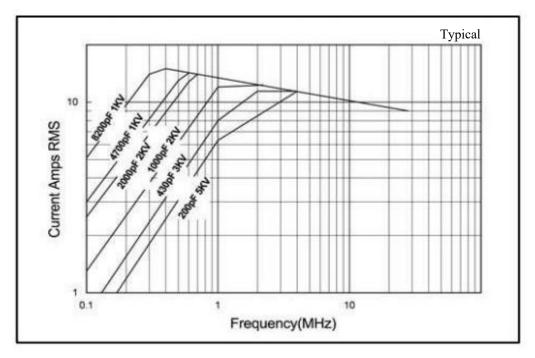
Test Parameters

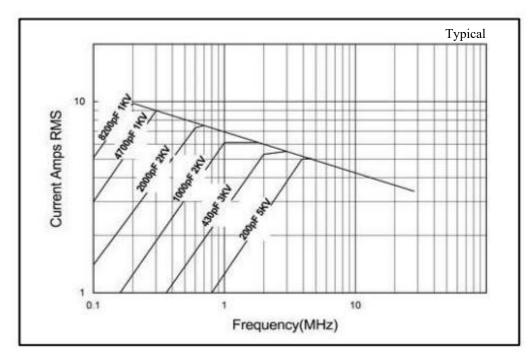

	- I	
Thermal Shock	DWV: The initial value IR: Shall not be less than 30% of the initial value. Capacitance Change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 175°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.
Moisture Resistance	No more than 0.5% or 0.5pF, whichever is greater.	MIL-STD-202, Method 106
Humidity (Steady State)	DWV: The initial value IR: The initial value Capacitance Change: No more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A With 1.5Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	30% of the initial value	MIL-STD-202, Method 108. For 2000 hours, at 125°C. 200% of Voltage for Capacitors, Rated Voltage ≤ 500VDC; 120% of Voltage for Capacitors, 500VDC< Rated Voltage ≤1250VDC; 100% for Voltage for Capacitors, Rated Voltage >1250VDC
Terminal Strength	Force: 30lbs. min. Duration Time: 5 to 10 seconds	MIL-STD-202, Method 211A, Test Condition A. Applied a force and maintained for a period of 5 to 10 seconds. The force shall be in the direction of the axes of the terminations.

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

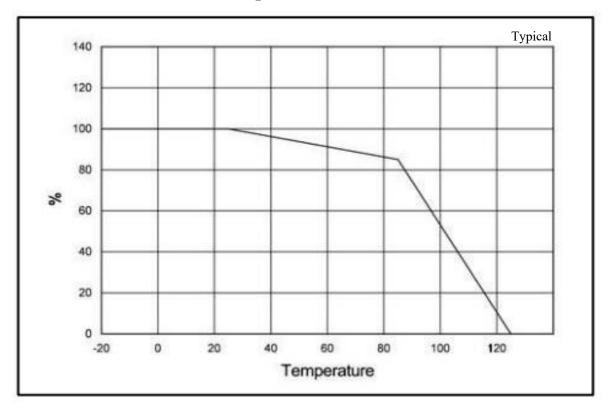


ESR vs. Capacitance Measured @ 30MHz


≠ Self Resonant Frequency vs. Capacitance



Strip Terminals Rated Current vs. Frequency


≠ Wire Terminals Rated Current vs. Frequency

% Maximum Current vs. Ambient Temperature

‡ Recommended Land Pattern Dimensions

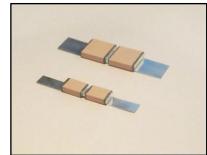
Regarding Landing Patterns, please refer to IPC-7351B (Table 3-5, 3-6).

Custom Assemblies

Passive Plus offers Capacitor Assemblies for high power requirements. Typical assemblies are configured in series and/or parallel combinations, producing higher voltage/current handling capabilities, extended capacitance range and tighter tolerances.

To get started, simply send us either a mechanical drawing or circuit conditions and we can recommend a solution. All components are 100% upscreened for Partial Discharge and Sonoscanned. All assemblies include a 100hr Military burn in.

Custom Capacitor Assemblies



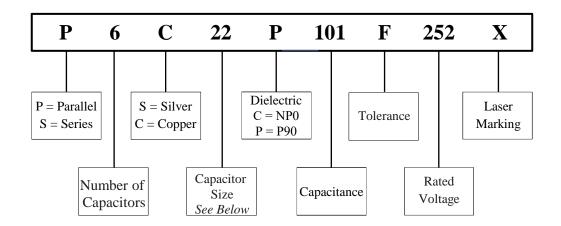
Marking shown for illustration purposes only. Actual marking may differ.

Please contact PPI (sales@passiveplus.com) to discuss custom assembly options.

Custom Capacitor Assemblies

Product Features

High Operating Voltage, High Operating Current, Extended Capacitance, Tighter Tolerances, High Reliability, High Q, Ultra-low ESR, Non-Magnetic


Typical Applications Field

High Power RF, Medical Electronics, Broadcast, Semiconductor Manufacturing, High Magnetic Environments, Inductive Heating

Marking shown for illustration purposes only Actual marking may differ.

Part Numbering

Capacitor Size:

$$11 = 1111$$
; $22 = 2225$; $38 = 3838$; $60 = 6040$; $76 = 7676$

Capacitance: For capacitor values requiring 3 significant digits,

e.g.
$$1222.5pF = 1222R5$$

Silver bracket assembly with six 2225C pieces in parallel, Capacitance is 100pF,

Capacitance tolerance is ±1%, WVDC is 2500 V and Laser marking.

e.g. S2S25C1222R5G203X

Silver bracket assembly with two 2225C pieces in series, Capacitance is 1222.5pF,

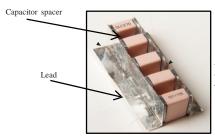
Capacitance tolerance is ±2%, WVDC is 20,000V and Laser marking.

Capacitance and Voltage

By Buyer's requirements using existing drawings, mechanical sketches, or we can help with capable modeling of assemblies thermal rise predictions.

Custom Capacitor Assemblies

Typical Assembly Configurations


Parallel Assemblies

unit:inch (millimeter)

	1111C/P	22225C/P	3838C/P	6040C	7676C	
Lead Material	Silver plated Copper or Silver					
Lead Thickness	.004 or .010 (0.1 or 0.25)			.010 or .020 (0.25 or 0.51)		
Lead Length (max.)	.50 (12.7) .75 (19.8)			2.0 (50.8)		
Capacitor Spacer (typ.)	.050 or .078 (1.3 or 2)			.090 (2.3)		

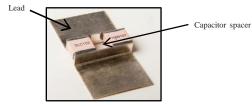
Mounting Configuration

Horizontal / Vertical

Marking illustration purposes only. Actual marking may differ.

3838 Series/Parallel Combination

Series Assemblies


unit:inch (millimeter)

	22225C/P	3838C/P	6040C	7676C			
Lead Type	L Bracket						
Lead Material	Silver plated Copper or Silver						
Lead Thickness	.010	(0.25)	.010 or .020 (0.25 or 0.51)				
Lead Length (max.)	.75 (19.8)	3) 1.0 (25.4)					
Capacitor Spacer (typ.)	.050 or .157 (1.3 or 4)						
Mounting Configuration	Horizontal						

• Epoxy Molding Available

Other Assemblies: By Buyer's requirement. Contact PPI.

Marking shown for illustration purposes only. Actual marking may differ.

Passive Plus RF & Microweve Components T

Headquarters: New York, USA