Traditional High Q (>10,000) Low ESR Multi-Layer Ceramic Capacitors

2225C/P (0.220" x 0.250")

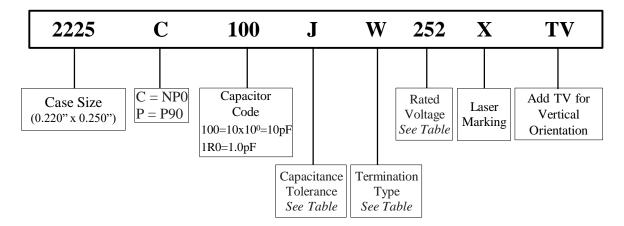
Product Features

- High Q
- High RF Current/Voltage
- Ultra Stable Performance
- Capacitance Range: 0.5pF to 2700pF
- Working Voltage: 2500V
- Extended Voltage: 3600V

÷ Product Applications

Typical Functional Applications:

- Tuning Bypass Coupling
- Feedback D.C. Blocking
- Impedance Matching


Typical Circuit Applications:

- UHF/Microwave RF Power Amplifiers
- Antenna Tuning Plasma Chambers
- Medical Equipment

Marking shown for illustration purposes only.
Actual marking may differ.

Part Numbering

‡ Capacitance Tolerance Codes

Code	A	В	C	D	F	G	J	K
Tol.	±0.05pF	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

Voltage Codes

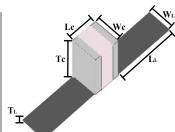
Voltage	Code	Voltage	Code
500V	501	2500V	252
1000V	102	3000V	302
1500V	152	3600V	362
2000V	202		

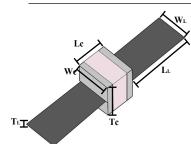
≠ 2225C/P Capacitance Values

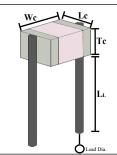
• NP0=C; P90=P

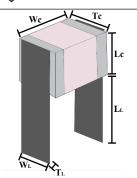
Special capacitances, tolerances and WVDC are available. Please contact PPI.

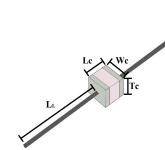
Cap.	Сар	Tol.	Rated	WVDC	Cap.	Сар	Tol.	Rated V	WVDC	Cap.	Сар	Tol.	Rated	WVDC	Cap.	Сар	Tol.	Rated	WVDC	
рF	Code	101.	Std.	Ext.	рF	Code	101.	Std.	Ext.	pF	Code	101.	Std.	Ext.	pF	Code	101.	Std.	Ext.	
0.5	0R5				4.3	4R3				43	430				430	431	F,G,	1500\/	V 2000V	
0.6	OR6				4.7	4R7				47	470				470	471	J,K	13001	20001	
0.7	OR7				5.1	5R1				51	510				510	511				
0.8	OR8				5.6	5R6	D. C		56	560				560	561					
0.9	OR9				6.2	6R2	B,C, D	2500V	3600V	62	620	F,G,	F,G, J,K 2500V	25001/ 26001/	2500V 3600V	620	621			
1.0	1R0				6.8	6R8				68	680	J,K		30001	680	681				
1.1	1R1				7.5	7R5				75	750				750	751	F,G,	1000\/	15001/	
1.2	1R2				8.2	8R2				82	820				820	821	J,K	1000V 1500V	13000	
1.3	1R3				9.1	9R1				91	910				910	911				
1.4	1R4			,	10	100			100	100 101				1000	102					
1.5	1R5				11	110				110	111				1100	112				
1.6	1R6	B,C,	25001	3600V	12	120			120	121				1200	122					
1.7	1R7	D	2500V	3000V	13	130				130	131				1500	152				
1.8	1R8				15	150				150	151				1800	182	F,G,	500V	N/A	
1.9	1R9				16	160				160	161	F,G,	25001	3000V 2200	2200	222	J,K	5000	N/A	
2.0	2R0				18	180				180	181	J,K	2500V	3000V	2700	272				
2.1	2R1				20	200	F,G, J,K	2500V	3600V	200	201									
2.2	2R2				22	220	3,10			220	221									
2.4	2R4				24	240				240	241									
2.7	2R7				27	270				270	271									
3.0	3R0				30	300				300	301									
3.3	3R3				33	330				330	331	F,G,	15001	20001						
3.6	3R6				36	360				360	361	J,K	1500V	2000V						
3.9	3R9				39	390				390	391									




† Termination Types and Codes

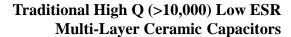

Chip Termination: Codes: W, L, P


Microstrip Termination: Codes: MS, MN


Axial Ribbon Termination: Code: AR, AN

Radial Wire Termination: Codes: RW, RN

Radial Ribbon Termination: Code: RR, FN



Axial Wire Termination: Codes: AW, BN

Termination Code	Magnetic Termination
W Rohs	100% Tin Solder over Nickel Barrier
L	90%Tin/10%Lead Solder over Nickel Barrier
MS (ROHS)	
AR ROHS	
RR (ROHS)	Silver-Plated Copper
RW ROHS	
AW ROHS	

Termination Code	Non-Magnetic 🔗 Termination
P ROHS	100% Tin Solder over Copper Barrier
MN ROHS	
AN ROHS	
FN ROHS	Silver-Plated Copper
RN ROHS	
BN ROHS	
Note: "Non-Magn	etic" means no magnetic materials.

Dimensions - For Termination Types images, see previous page Unit: inch (millimeter)

	Magnetic Termination											
				Lead Dimensions								
	Code	Lei	ngth	Width	Thickness	Overlap	Length	Width	Thickness			
]	Lc	Wc	Tc	В	LL	WL	TL			
W 7/ T	Chin	0.225	+0.025 -0.010	0.250 ± 0.015	0.165 max	$0.020 \sim 0.047$			-			
W/L	Chip	(5.72	^{+0.64} _{-0.25})	(6.35 ± 0.38)	(4.19 max)	$(0.50 \sim 1.20)$	-	-				
MS	Microstrip						0.500 min	0.240 ± 0.005	0.008 ± 0.001			
AR	Axial						(12.70 min)	(6.1 ± 0.13)	(0.2 ± 0.025)			
	Ribbon	0.245	. 0.025	0.250 + 0.015	0.150		0.254	0.110 + 0.007	0.012 + 0.001			
RR	Radial Ribbon	*	$\pm 0.025 \pm 0.64)$	0.250 ± 0.015 (6.35 ± 0.38)	0.150 max (3.81 max)	-	0.354 min (9.00 min)	0.118 ± 0.005 (3.00 ± 0.13)	0.012 ± 0.001 (0.3 ± 0.025)			
DW	Radio		ŕ				0.709 min					
RW	Wire						(18.00 min)	Dia. $= 0.0$	31 ± 0.004			
AW	Axial						0.906 min	Dia. $= (0.$	80 ± 0.10)			
AW	Wire						(23.00 min)	•				

②				Non	rmination			②		
		Capacitor Dimensions						Lead Dimensions		
	Code	Le	ngth	Width	Thickness	Overlap	Length	Width	Thickness	
]	Lc	Wc	Tc	В	LL	WL	TL	
P	Chia	0.225	+0.025 -0.010	0.250 ± 0.015	0.165 max	$0.020 \sim 0.047$				
r 	Chip	(5.72	^{+0.64} _{-0.25})	(6.35 ± 0.38)	(4.19 max)	$(0.50 \sim 1.20)$	-	-	-	
MN	Microstrip						0.500 min	0.240 ± 0.005	0.008 ± 0.001	
AN	Axial Ribbon	-					(12.70 min)	(6.1 ± 0.13)	(0.2 ± 0.025)	
FN	Radial Ribbon		$\pm 0.025 \pm 0.64)$	0.250 ± 0.015 (6.35 ± 0.38)	0.100	-	0.354 min (9.00 min)	0.118 ± 0.005 (3.00 ± 0.13)	0.012 ± 0.001 (0.3 ± 0.025)	
RN	Radio Wire		ŕ	,			0.709 min (18.00 min)	Dia. = 0.0	31 ± 0.004	
BN	Axial Wire						0.906 min (23.00 min)	Dia. $= (0.5)$	80 ± 0.10)	

Note: Non-Magnetic means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.

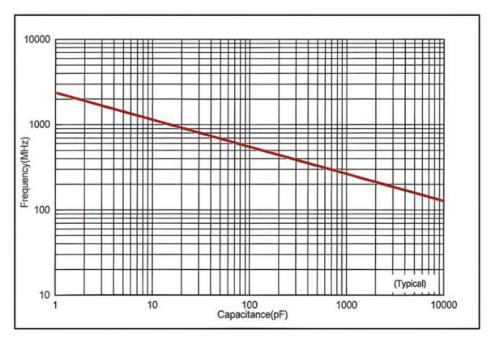
Electrical Specifications

Quality Factor (Q)	Greater than 10,000 at 1 MHz
Insulation Resistance (IR)	Test Voltage: 500V 10 ⁵ Megaohms min. @ +25°C 10 ⁴ Megaohms min. @ +125°C
Rated Voltage	See Rated Voltage in Capacitance Table
Dielectric Withstanding Voltage (DWV)	250% of Rated Voltage of 5 seconds, Rated Voltage ≤ 500VDC 150% of Voltage for 5 seconds, 500VDC <rated 120%="" 1250="" 5="" for="" of="" rated="" seconds,="" vdc="" voltage="" ≤=""> 1250 VDC</rated>
Operating Temperature Range	-55°C to 200°C
Temperature Coefficient (TC)	C: -55°C to 125°C
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater
Piezoelectric Effects	None
Termination Type	See Termination Type Table

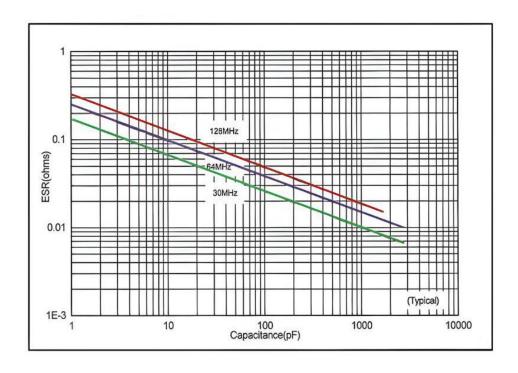
Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

÷ Environmental Specifications

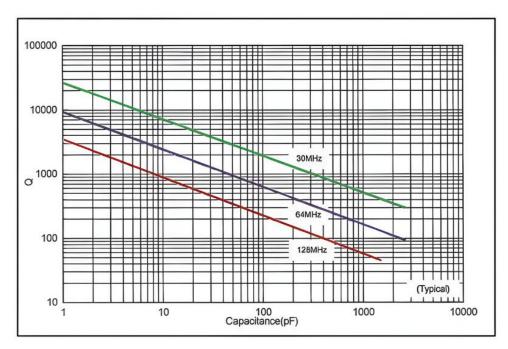
α	• 6•	4 •
\n	ecitic	ation
\mathbf{v}	CHIC	auvu

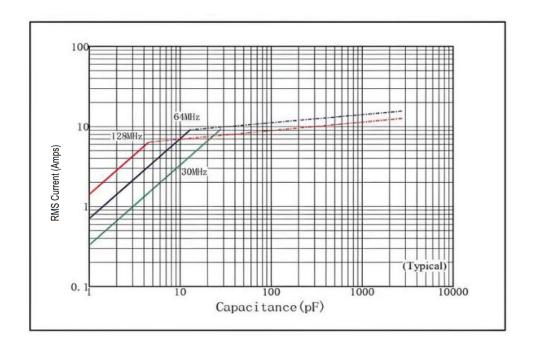

Test Parameters

Thermal Shock	DWV: The initial Value IR: Shall not be less than 30% of the initial value. Capacitance Change:	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 200°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.				
Moisture Resistance	No more than 0.5% or 0.5pF, whichever is greater.	MIL-STD-202, Method 106				
Humidity (Steady State)	DWV: The initial Value IR: The initial value. Capacitance Change: No more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A With 1.5Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.				
Life	IR: Shall not be less than 30% of the initial value. Capacitance Change: No more than 2.0% or 0.5pF, whichever is greater.	MIL-STD-202, Method 108. For 2000 hours, at 200°C. 200% of Voltage for Capacitors, Rated Voltage ≤ 500VDC; 120% of Voltage for Capacitors, 500VDC< Rated Voltage ≤1250VDC; 100% for Voltage for Capacitors, Rated Voltage >1250VDC				
Terminal Strength	Force: 20lbs typical, 10lbs. Minimum. Duration Time: 5 to 10 seconds	MIL-STD-202, Method 211A, Test Condition A. Applied a force and maintained for a period of 5 to 10 seconds. The force shall be in the direction of the axes of the terminations.				



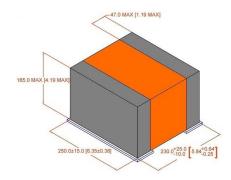
Series Resonance vs. Capacitance


ESR vs. Frequency



≠ Q vs. Capacitance

Current Rating vs. Capacitance


Current limits can depend on two different criteria. The first Voltage Limited Current ($I_{volt lim}$, represented by the solid line), the second is Power Dissipation Limited Current ($I_{pow diss}$).

$$I_{\text{volt lim}} = \frac{\sqrt{2}}{2} I_{peak} = \frac{\sqrt{2}}{2} \times \frac{V_{rated}}{X_C} = \sqrt{2} \pi FCV_{rated}$$

 $I_{\text{pow diss}} = \sqrt{\frac{P_{dissipation}}{ESR}}$ (If the thermal resistance of the mounting surface is 15°C/W, then you will reach the power dissipated limit of 4W)

Capacitor Application Program

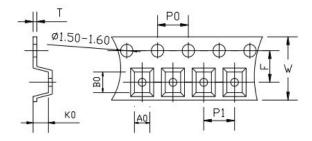
PPI's brand new online Capacitor Application Program (C.A.P.) helps Engineers and Designers select capacitors according to parameters such as cap value and frequency. C.A.P. allows engineers to insert capacitors requirements (Cap value, Frequency), producing Scattering Matrices (S2P) Charts while providing options (Case Size, Terminations, Mounting), and parameters (ESR, Q, Impedance) along with Datasheets. Once engineers have determined their capacitor requirements, C.A.P. also includes online Requests For Quotes (RFQs) and/or sample requests.

Recommended Land Pattern Dimensions

Regarding Landing Patterns, please refer to IPC-7351B (table 3-5, 3-6).

Custom Assemblies

Passive Plus offers Capacitor Assemblies for high power requirements. Typical assemblies are configured in series and/or parallel combinations, producing higher voltage/current handling capabilities, extended capacitance range and tighter tolerances.


To get started, simply send us either a mechanical drawing or circuit conditions and we can recommend a solution. All components are 100% upscreened for Partial Discharge and Sonoscanned. All assemblies include a 100hr Military burn in.

Tape & Reel Specifications (mm)

	Orientation	Measurement Unit	W	Р0	P1	T	F	Minimum Qty per Reel	Std Qty per Reel	Tape Material
	Н	in.	0.630 0.	157 0.4	172 0	.012	0.295	500	500	Plastic
	11	mm	16.00 4	.00 12	.00 (0.30	7.50	300	300	lastic
	V	in.	0.630 0.	157 0.3	315 0	0.020	0.295	500	500	Plastic
V	mm	16.00 4	.00 8.	00 (0.50	7.50	300	300	Tastic	

- Determined by component size. Typical clearance between the cavity and the component is: .50 (.002) min to .65 (.026) max for 12mm tape.
- The component cannot rotate more than 20° within the determined cavity.

sales@passiveplus.com PPI2225CPDATA120225RevB