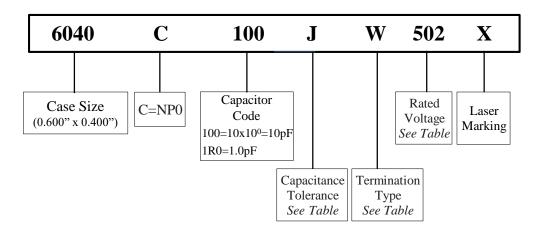
6040C (0.600" x 0.400")

F **Froduct Features**

- High Q
- High RF Current/Voltage
- Ultra Stable Performance
- Capacitance Range: 1.0pF to 6800pF
- Working Voltage: 5000V
- Extended Voltage: 8000V


÷ Typical Circuit Applications

- Semiconductor Manufacturing
- High Energy Power Transfers
- Plasma Chambers
- Medical Equipment

Marking shown for illustration purposes only. Actual marking may differ.

Part Numbering

÷ Capacitance Tolerance Codes

Code	В	С	D	F	G	J	K
Tol.	±0.1pF	±0.25pF	±0.5pF	±1%	±2%	±5%	±10%

🗧 Voltage Codes

Voltage	Code
1000V	102
2000V	202
3000V	302
5000V	502
8000V	802

www.passiveplus.com

+1 (631) 425-0938

sales@passiveplus.com PPI6040CDATA010324RevA

6040C (0.600" x 0.400")

≠ 6040C Capacitance Values

For special capacitances, tolerances and WVDC, please contact PPI.

Marking shown for illustration purposes only. Actual marking may differ.

Cap.	Сар	Tol.	Rated WV	DC	Cap.	Сар	Tol.	<u>Rated</u>	WVDC	Cap.	Сар	Tol.	Rated	WVDC
рF	Code	101.	Std. Ex	td. Ext. pF Code Std. Ext.	рF	Code	101.	Std.	Ext.					
1.0	1R0				39	390				1500	152	ГC		
1.2	1R2				47	470				1800	182	F,G, J,K	2000V	3000V
1.5	1R5				56	560	F,G, J,K	5000V 8000V	2200	222	•)			
1.8	1R8				68	680			2700	272				
2.2	2R2				82	820				3300	332			
2.7	2R7	B,C,	5000V 80		100	101				4700	472	F,G,	1000	2000V
3.3	3R3	D	2000 8000	000	120	121				5100	512	J,K	10000 2	2000 V
3.9	3R9				150	151			5600	562				
4.7	4R7				180	181			6800	682				
5.6	5R6				220	221								
6.8	6R8			270 271 F	F,G,	3000V 5000V								
8.2	8R2				330	331	J,K	30000	50000					
10	100				390	391								
12	120				470	471								
15	150	5.0			560	561								
18	180	F,G, J,K	5000V 80	00V	680	681								
22	220	-,			820	821								
27	270				1000	102	F,G, J,K	2000V	3000V					
33	330				1200	122	-,							

sales@passiveplus.com

PPI6040CDATA010324RevA

6040C (0.600" x 0.400")

† Termination Types and Codes

Termination: MN
Termination: , RN
:
gnetic 🔗 ation
Tin pper Barrier
l Copper

6040C (0.600" x 0.400")

i **Dimensions** - For Termination Types images, see previous page Unit: i

Unit: inch (millimeter)

	Magnetic Termination								
				Lead Dimensions					
(Code	Le	ngth	Width	Thickness	Overlap	Length	Width	Thickness
]	Lc	Wc	Tc	В	LL	WL	TL
W/L	Chin	0.614	+0.015 -0.010	0.433 ± 0.010	0.154 ± 0.008	0.063 max			
W/L	Chip	(15.6	+0.38 -0.25)	(11.0 ± 0.25)	(3.90 ± 0.20)	(1.60 max)	-	-	-
MS	Microstrip						0.787 min	0.350 ± 0.010	0.008 ± 0.001
IVIS	Wilefostifp						(20.0 min)	(8.89 ± 0.50)	(0.20 ± 0.025)
	Axial						0.787 min	0.350 ± 0.010	0.008 ± 0.001
AR	Ribbon	0.614	+0.015 -0.010	0.433 ± 0.010	0.154 ± 0.008		(20.0 min)	(8.89 ± 0.50)	(0.20 ± 0.025)
RW	Radio Wire	(15.6	+0.38 -0.25)	(11.0 ± 0.25)	(3.90 ± 0.20)	-	0.787 min	$D_{in} = 0.0$	20 + 0.004
	Axial	-					(20.0 min) 0.984 min		30 ± 0.004
AW	Wire						(25.00 min)	· · · ·	80 ± 0.10)

\bigotimes	Non-Magnetic Termination								
				Capacitor 1	Dimensions		Lead Dimensions		
(Code	Le	ngth	Width	Thickness	Overlap	Length	Width	Thickness
]	Lc	Wc	Tc	В	LL	WL	TL
Р	Chip	0.614	+0.015 -0.010	0.433 ± 0.010	0.154 ± 0.008	0.063 max			
Г	Chip	(15.6	+0.38 -0.25)	(11.0 ± 0.25)	(3.90 ± 0.20)	(1.60 max)	-	-	-
MN	Microstrip						0.787 min	0.350 ± 0.010	0.008 ± 0.001
	-						(20.0 min)	$\frac{(8.89 \pm 0.50)}{0.250 \pm 0.010}$	(0.20 ± 0.025)
AN	Axial Ribbon	0.614	+0.015 -0.010	0.433 ± 0.010	0.154 ± 0.008		0.787 min (20.0 min)	$\begin{array}{c} 0.350 \pm 0.010 \\ (8.89 \pm 0.50) \end{array}$	$\begin{array}{c} 0.008 \pm 0.001 \\ (0.20 \pm 0.025) \end{array}$
RN	Radio Wire	(15.6	+0.38 -0.25)	(11.0 ± 0.25)	(3.90 ± 0.20)	-	0.787 min (20.0 min)	Dia = 0.0	30 ± 0.004
BN	Axial Wire						0.984 min (25.00 min)	•	80 ± 0.10)

Note: Non-Magnetic means no magnetic materials. All leads are attached with high temperature solder and parts are RoHS Compliant.

sales@passiveplus.com

PPI6040CDATA010324RevA

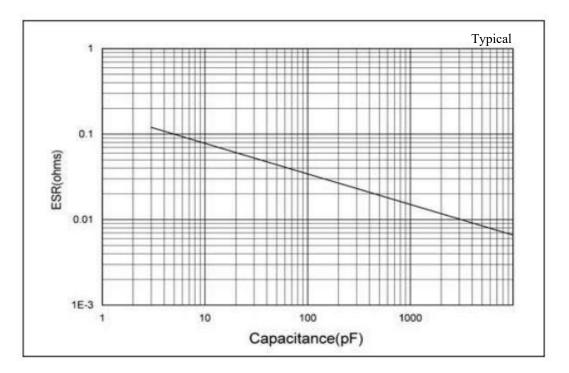
6040C (0.600" x 0.400")

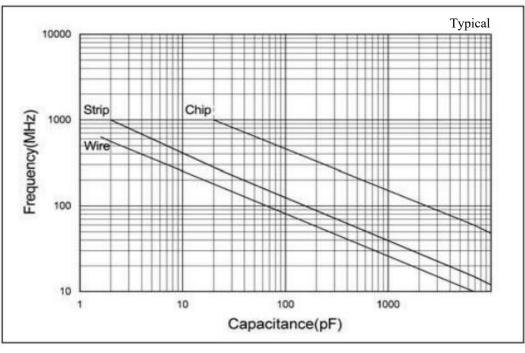
Electrical Specifications

Quality Factor (Q)	No less than 1000pF, Q value more than 2000, Test Frequency 1MHz; More than 1000pF, Q value more than 2000, Test Frequency 1MHz					
Insulation Resistance (IR)	Test Voltage: 500V 10 ⁵ Megaohms min. @ +25°C 10 ⁴ Megaohms min. @ +125°C					
Rated Voltage	See Rated Voltage in Capacitance Table					
Dielectric Withstanding Voltage (DWV)	250% of Voltage of 5 seconds, Rated Voltage \leq 500VDC 150% of Voltage for 5 seconds, 500VDC <rated <math="" voltage="">\leq 1250 VDC 120% of Voltage for 5 seconds, Rated Voltage > 1250 VDC</rated>					
Operating Temperature Range	-55°C to 175°C					
Temperature Coefficient (TC)	-55°C to 125°C 0±30ppm/°C >125°C to 175°C 0±60ppm/°C					
Capacitance Drift	$\pm 0.02\%$ or ± 0.02 pF, whichever is greater					
Piezoelectric Effects	None					
Termination Type	See Termination Type Table					

÷ Environmental Specifications

	Specification	Test Parameters
Thermal Shock	IR: Shall not be less than 30% of the initial value.	MIL-STD-202, Method 107, Condition A. At the maximum rated temperature (-55°C and 175°C) stay 30 minutes, the time of removing shall not be more than 3 minutes. Perform five cycles.
Moisture Resistance	No more than 0.5% or 0.5pF, whichever is greater.	MIL-STD-202, Method 106
Humidity (Steady State)	DWV: The initial value IR: The initial value Capacitance Change: No more than 0.3% or 0.3pF, whichever is greater.	MIL-STD-202, Method 103, Condition A With 1.5Volts DC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours minimum.
Life	30% of the initial value	MIL-STD-202, Method 108. For 2000 hours, at 125°C. 200% of Voltage for Capacitors, Rated Voltage ≤ 500VDC; 120% of Voltage for Capacitors, 500VDC< Rated Voltage ≤1250VDC; 100% for Voltage for Capacitors, Rated Voltage >1250VDC
Terminal Strength	Horee 75 be typical 70 be min	

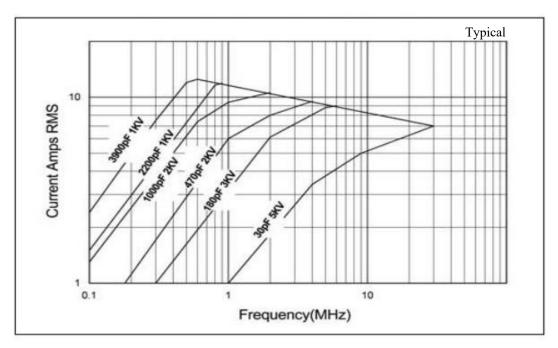

Capacitors are designed and manufactured to meet the requirements of MIL-PRF-55681 and MIL-PRF-123.

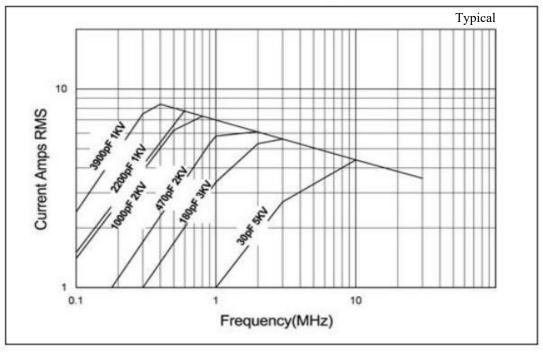


6040C (0.600" x 0.400")

≠ ESR vs. Capacitance Measured @ 30MHz

Self Resonant Frequency vs. Capacitance

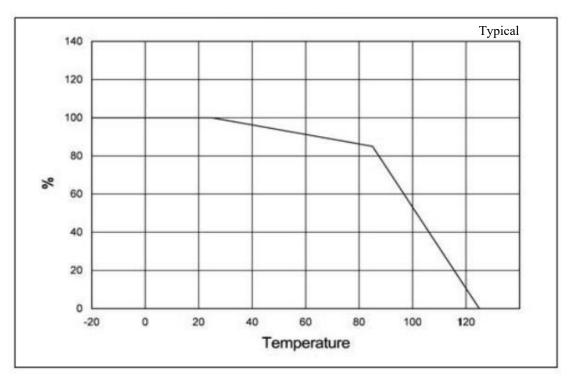




6040C (0.600" x 0.400")

÷ Strip Terminals Rated Current vs. Frequency

÷ Wire Terminals Rated Current vs. Frequency



6040C (0.600" x 0.400")

≠ % Maximum Current vs. Ambient Temperature

Recommended Land Pattern Dimensions

Regarding Landing Patterns, please refer to IPC-7351B (table 3-5, 3-6).

+ Custom Assemblies

Passive Plus offers Capacitor Assemblies for high power requirements. Typical assemblies are configured in series and/or parallel combinations, producing higher voltage/current handling capabilities, extended capacitance range and tighter tolerances.

To get started, simply send us either a mechanical drawing or circuit conditions and we can recommend a solution. All components are 100% upscreened for Partial Discharge and Sonoscanned. All assemblies include a 100hr Military burn in.

